 270b39b2eb
			
		
	
	
		270b39b2eb
		
	
	
	
	
		
			
			* Spirals, Pinwheels, and Documentation....Oh My! * Spiral effect band thickness adjustments * Fixing animation spin directions
		
			
				
	
	
		
			284 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __INC_LIB8TION_TRIG_H
 | |
| #define __INC_LIB8TION_TRIG_H
 | |
| 
 | |
| ///@ingroup lib8tion
 | |
| 
 | |
| ///@defgroup Trig Fast trig functions
 | |
| /// Fast 8 and 16-bit approximations of sin(x) and cos(x).
 | |
| ///        Don't use these approximations for calculating the
 | |
| ///        trajectory of a rocket to Mars, but they're great
 | |
| ///        for art projects and LED displays.
 | |
| ///
 | |
| ///        On Arduino/AVR, the 16-bit approximation is more than
 | |
| ///        10X faster than floating point sin(x) and cos(x), while
 | |
| /// the 8-bit approximation is more than 20X faster.
 | |
| ///@{
 | |
| 
 | |
| #if defined(__AVR__)
 | |
| #define sin16 sin16_avr
 | |
| #else
 | |
| #define sin16 sin16_C
 | |
| #endif
 | |
| 
 | |
| /// Fast 16-bit approximation of sin(x). This approximation never varies more than
 | |
| /// 0.69% from the floating point value you'd get by doing
 | |
| ///
 | |
| ///     float s = sin(x) * 32767.0;
 | |
| ///
 | |
| /// @param theta input angle from 0-65535
 | |
| /// @returns sin of theta, value between -32767 to 32767.
 | |
| LIB8STATIC int16_t sin16_avr( uint16_t theta )
 | |
| {
 | |
|     static const uint8_t data[] =
 | |
|     { 0,         0,         49, 0, 6393%256,   6393/256, 48, 0,
 | |
|       12539%256, 12539/256, 44, 0, 18204%256, 18204/256, 38, 0,
 | |
|       23170%256, 23170/256, 31, 0, 27245%256, 27245/256, 23, 0,
 | |
|       30273%256, 30273/256, 14, 0, 32137%256, 32137/256,  4 /*,0*/ };
 | |
| 
 | |
|     uint16_t offset = (theta & 0x3FFF);
 | |
| 
 | |
|     // AVR doesn't have a multi-bit shift instruction,
 | |
|     // so if we say "offset >>= 3", gcc makes a tiny loop.
 | |
|     // Inserting empty volatile statements between each
 | |
|     // bit shift forces gcc to unroll the loop.
 | |
|     offset >>= 1; // 0..8191
 | |
|     asm volatile("");
 | |
|     offset >>= 1; // 0..4095
 | |
|     asm volatile("");
 | |
|     offset >>= 1; // 0..2047
 | |
| 
 | |
|     if( theta & 0x4000 ) offset = 2047 - offset;
 | |
| 
 | |
|     uint8_t sectionX4;
 | |
|     sectionX4 = offset / 256;
 | |
|     sectionX4 *= 4;
 | |
| 
 | |
|     uint8_t m;
 | |
| 
 | |
|     union {
 | |
|         uint16_t b;
 | |
|         struct {
 | |
|             uint8_t blo;
 | |
|             uint8_t bhi;
 | |
|         };
 | |
|     } u;
 | |
| 
 | |
|     //in effect u.b = blo + (256 * bhi);
 | |
|     u.blo = data[ sectionX4 ];
 | |
|     u.bhi = data[ sectionX4 + 1];
 | |
|     m     = data[ sectionX4 + 2];
 | |
| 
 | |
|     uint8_t secoffset8 = (uint8_t)(offset) / 2;
 | |
| 
 | |
|     uint16_t mx = m * secoffset8;
 | |
| 
 | |
|     int16_t  y  = mx + u.b;
 | |
|     if( theta & 0x8000 ) y = -y;
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| /// Fast 16-bit approximation of sin(x). This approximation never varies more than
 | |
| /// 0.69% from the floating point value you'd get by doing
 | |
| ///
 | |
| ///     float s = sin(x) * 32767.0;
 | |
| ///
 | |
| /// @param theta input angle from 0-65535
 | |
| /// @returns sin of theta, value between -32767 to 32767.
 | |
| LIB8STATIC int16_t sin16_C( uint16_t theta )
 | |
| {
 | |
|     static const uint16_t base[] =
 | |
|     { 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137 };
 | |
|     static const uint8_t slope[] =
 | |
|     { 49, 48, 44, 38, 31, 23, 14, 4 };
 | |
| 
 | |
|     uint16_t offset = (theta & 0x3FFF) >> 3; // 0..2047
 | |
|     if( theta & 0x4000 ) offset = 2047 - offset;
 | |
| 
 | |
|     uint8_t section = offset / 256; // 0..7
 | |
|     uint16_t b   = base[section];
 | |
|     uint8_t  m   = slope[section];
 | |
| 
 | |
|     uint8_t secoffset8 = (uint8_t)(offset) / 2;
 | |
| 
 | |
|     uint16_t mx = m * secoffset8;
 | |
|     int16_t  y  = mx + b;
 | |
| 
 | |
|     if( theta & 0x8000 ) y = -y;
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Fast 16-bit approximation of cos(x). This approximation never varies more than
 | |
| /// 0.69% from the floating point value you'd get by doing
 | |
| ///
 | |
| ///     float s = cos(x) * 32767.0;
 | |
| ///
 | |
| /// @param theta input angle from 0-65535
 | |
| /// @returns sin of theta, value between -32767 to 32767.
 | |
| LIB8STATIC int16_t cos16( uint16_t theta)
 | |
| {
 | |
|     return sin16( theta + 16384);
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // sin8 & cos8
 | |
| //        Fast 8-bit approximations of sin(x) & cos(x).
 | |
| //        Input angle is an unsigned int from 0-255.
 | |
| //        Output is an unsigned int from 0 to 255.
 | |
| //
 | |
| //        This approximation can vary to to 2%
 | |
| //        from the floating point value you'd get by doing
 | |
| //          float s = (sin( x ) * 128.0) + 128;
 | |
| //
 | |
| //        Don't use this approximation for calculating the
 | |
| //        "real" trigonometric calculations, but it's great
 | |
| //        for art projects and LED displays.
 | |
| //
 | |
| //        On Arduino/AVR, this approximation is more than
 | |
| //        20X faster than floating point sin(x) and cos(x)
 | |
| 
 | |
| #if defined(__AVR__) && !defined(LIB8_ATTINY)
 | |
| #define sin8 sin8_avr
 | |
| #else
 | |
| #define sin8 sin8_C
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static const uint8_t b_m16_interleave[8] = { 0, 49, 49, 41, 90, 27, 117, 10 };
 | |
| 
 | |
| /// Fast 8-bit approximation of sin(x). This approximation never varies more than
 | |
| /// 2% from the floating point value you'd get by doing
 | |
| ///
 | |
| ///     float s = (sin(x) * 128.0) + 128;
 | |
| ///
 | |
| /// @param theta input angle from 0-255
 | |
| /// @returns sin of theta, value between 0 and 255
 | |
| LIB8STATIC uint8_t  sin8_avr( uint8_t theta)
 | |
| {
 | |
|     uint8_t offset = theta;
 | |
| 
 | |
|     asm volatile(
 | |
|                  "sbrc %[theta],6         \n\t"
 | |
|                  "com  %[offset]           \n\t"
 | |
|                  : [theta] "+r" (theta), [offset] "+r" (offset)
 | |
|                  );
 | |
| 
 | |
|     offset &= 0x3F; // 0..63
 | |
| 
 | |
|     uint8_t secoffset  = offset & 0x0F; // 0..15
 | |
|     if( theta & 0x40) secoffset++;
 | |
| 
 | |
|     uint8_t m16; uint8_t b;
 | |
| 
 | |
|     uint8_t section = offset >> 4; // 0..3
 | |
|     uint8_t s2 = section * 2;
 | |
| 
 | |
|     const uint8_t* p = b_m16_interleave;
 | |
|     p += s2;
 | |
|     b   = *p;
 | |
|     p++;
 | |
|     m16 = *p;
 | |
| 
 | |
|     uint8_t mx;
 | |
|     uint8_t xr1;
 | |
|     asm volatile(
 | |
|                  "mul %[m16],%[secoffset]   \n\t"
 | |
|                  "mov %[mx],r0              \n\t"
 | |
|                  "mov %[xr1],r1             \n\t"
 | |
|                  "eor  r1, r1               \n\t"
 | |
|                  "swap %[mx]                \n\t"
 | |
|                  "andi %[mx],0x0F           \n\t"
 | |
|                  "swap %[xr1]               \n\t"
 | |
|                  "andi %[xr1], 0xF0         \n\t"
 | |
|                  "or   %[mx], %[xr1]        \n\t"
 | |
|                  : [mx] "=d" (mx), [xr1] "=d" (xr1)
 | |
|                  : [m16] "d" (m16), [secoffset] "d" (secoffset)
 | |
|                  );
 | |
| 
 | |
|     int8_t y = mx + b;
 | |
|     if( theta & 0x80 ) y = -y;
 | |
| 
 | |
|     y += 128;
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Fast 8-bit approximation of sin(x). This approximation never varies more than
 | |
| /// 2% from the floating point value you'd get by doing
 | |
| ///
 | |
| ///     float s = (sin(x) * 128.0) + 128;
 | |
| ///
 | |
| /// @param theta input angle from 0-255
 | |
| /// @returns sin of theta, value between 0 and 255
 | |
| LIB8STATIC uint8_t sin8_C( uint8_t theta)
 | |
| {
 | |
|     uint8_t offset = theta;
 | |
|     if( theta & 0x40 ) {
 | |
|         offset = (uint8_t)255 - offset;
 | |
|     }
 | |
|     offset &= 0x3F; // 0..63
 | |
| 
 | |
|     uint8_t secoffset  = offset & 0x0F; // 0..15
 | |
|     if( theta & 0x40) secoffset++;
 | |
| 
 | |
|     uint8_t section = offset >> 4; // 0..3
 | |
|     uint8_t s2 = section * 2;
 | |
|     const uint8_t* p = b_m16_interleave;
 | |
|     p += s2;
 | |
|     uint8_t b   =  *p;
 | |
|     p++;
 | |
|     uint8_t m16 =  *p;
 | |
| 
 | |
|     uint8_t mx = (m16 * secoffset) >> 4;
 | |
| 
 | |
|     int8_t y = mx + b;
 | |
|     if( theta & 0x80 ) y = -y;
 | |
| 
 | |
|     y += 128;
 | |
| 
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| /// Fast 8-bit approximation of cos(x). This approximation never varies more than
 | |
| /// 2% from the floating point value you'd get by doing
 | |
| ///
 | |
| ///     float s = (cos(x) * 128.0) + 128;
 | |
| ///
 | |
| /// @param theta input angle from 0-255
 | |
| /// @returns sin of theta, value between 0 and 255
 | |
| LIB8STATIC uint8_t cos8( uint8_t theta)
 | |
| {
 | |
|     return sin8( theta + 64);
 | |
| }
 | |
| 
 | |
| /// Fast 16-bit approximation of atan2(x).
 | |
| /// @returns atan2, value between 0 and 255
 | |
| LIB8STATIC uint8_t atan2_8(int16_t dy, int16_t dx)
 | |
| {
 | |
|     if (dy == 0)
 | |
|     {
 | |
|         if (dx >= 0)
 | |
|             return 0;
 | |
|         else
 | |
|             return 128;
 | |
|     }
 | |
| 
 | |
|     int16_t abs_y = dy > 0 ? dy : -dy;
 | |
|     int8_t a;
 | |
| 
 | |
|     if (dx >= 0)
 | |
|         a = 32 - (32 * (dx - abs_y) / (dx + abs_y));
 | |
|     else
 | |
|         a = 96 - (32 * (dx + abs_y) / (abs_y - dx));
 | |
| 
 | |
|     if (dy < 0)
 | |
|         return -a;     // negate if in quad III or IV
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| ///@}
 | |
| #endif
 |