 c98247e3dd
			
		
	
	
		c98247e3dd
		
	
	
	
	
		
			
			* RGB Matrix overhaul Breakout of animations to separate files Integration of optimized int based math lib Overhaul of rgb_matrix.c and animations for performance * Updating effect function api for future extensions * Combined the keypresses || keyreleases define checks into a single define so I stop forgetting it where necessary * Moving define RGB_MATRIX_KEYREACTIVE_ENABLED earlier in the include chain
		
			
				
	
	
		
			542 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			542 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __INC_LIB8TION_SCALE_H
 | |
| #define __INC_LIB8TION_SCALE_H
 | |
| 
 | |
| ///@ingroup lib8tion
 | |
| 
 | |
| ///@defgroup Scaling Scaling functions
 | |
| /// Fast, efficient 8-bit scaling functions specifically
 | |
| /// designed for high-performance LED programming.
 | |
| ///
 | |
| /// Because of the AVR(Arduino) and ARM assembly language
 | |
| /// implementations provided, using these functions often
 | |
| /// results in smaller and faster code than the equivalent
 | |
| /// program using plain "C" arithmetic and logic.
 | |
| ///@{
 | |
| 
 | |
| ///  scale one byte by a second one, which is treated as
 | |
| ///  the numerator of a fraction whose denominator is 256
 | |
| ///  In other words, it computes i * (scale / 256)
 | |
| ///  4 clocks AVR with MUL, 2 clocks ARM
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t scale8( uint8_t i, fract8 scale)
 | |
| {
 | |
| #if SCALE8_C == 1
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|     return (((uint16_t)i) * (1+(uint16_t)(scale))) >> 8;
 | |
| #else
 | |
|     return ((uint16_t)i * (uint16_t)(scale) ) >> 8;
 | |
| #endif
 | |
| #elif SCALE8_AVRASM == 1
 | |
| #if defined(LIB8_ATTINY)
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|     uint8_t work=i;
 | |
| #else
 | |
|     uint8_t work=0;
 | |
| #endif
 | |
|     uint8_t cnt=0x80;
 | |
|     asm volatile(
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|         "  inc %[scale]                 \n\t"
 | |
|         "  breq DONE_%=                 \n\t"
 | |
|         "  clr %[work]                  \n\t"
 | |
| #endif
 | |
|         "LOOP_%=:                       \n\t"
 | |
|         /*"  sbrc %[scale], 0             \n\t"
 | |
|         "  add %[work], %[i]            \n\t"
 | |
|         "  ror %[work]                  \n\t"
 | |
|         "  lsr %[scale]                 \n\t"
 | |
|         "  clc                          \n\t"*/
 | |
|         "  sbrc %[scale], 0             \n\t"
 | |
|         "  add %[work], %[i]            \n\t"
 | |
|         "  ror %[work]                  \n\t"
 | |
|         "  lsr %[scale]                 \n\t"
 | |
|         "  lsr %[cnt]                   \n\t"
 | |
|         "brcc LOOP_%=                   \n\t"
 | |
|         "DONE_%=:                       \n\t"
 | |
|         : [work] "+r" (work), [cnt] "+r" (cnt)
 | |
|         : [scale] "r" (scale), [i] "r" (i)
 | |
|         :
 | |
|       );
 | |
|     return work;
 | |
| #else
 | |
|     asm volatile(
 | |
| #if (FASTLED_SCALE8_FIXED==1)
 | |
|         // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
 | |
|         "mul %0, %1          \n\t"
 | |
|         // Add i to r0, possibly setting the carry flag
 | |
|         "add r0, %0         \n\t"
 | |
|         // load the immediate 0 into i (note, this does _not_ touch any flags)
 | |
|         "ldi %0, 0x00       \n\t"
 | |
|         // walk and chew gum at the same time
 | |
|         "adc %0, r1          \n\t"
 | |
| #else
 | |
|          /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
 | |
|          "mul %0, %1          \n\t"
 | |
|          /* Move the high 8-bits of the product (r1) back to i */
 | |
|          "mov %0, r1          \n\t"
 | |
|          /* Restore r1 to "0"; it's expected to always be that */
 | |
| #endif
 | |
|          "clr __zero_reg__    \n\t"
 | |
| 
 | |
|          : "+a" (i)      /* writes to i */
 | |
|          : "a"  (scale)  /* uses scale */
 | |
|          : "r0", "r1"    /* clobbers r0, r1 */ );
 | |
| 
 | |
|     /* Return the result */
 | |
|     return i;
 | |
| #endif
 | |
| #else
 | |
| #error "No implementation for scale8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| ///  The "video" version of scale8 guarantees that the output will
 | |
| ///  be only be zero if one or both of the inputs are zero.  If both
 | |
| ///  inputs are non-zero, the output is guaranteed to be non-zero.
 | |
| ///  This makes for better 'video'/LED dimming, at the cost of
 | |
| ///  several additional cycles.
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video( uint8_t i, fract8 scale)
 | |
| {
 | |
| #if SCALE8_C == 1 || defined(LIB8_ATTINY)
 | |
|     uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
 | |
|     // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | |
|     // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
 | |
|     return j;
 | |
| #elif SCALE8_AVRASM == 1
 | |
|     uint8_t j=0;
 | |
|     asm volatile(
 | |
|         "  tst %[i]\n\t"
 | |
|         "  breq L_%=\n\t"
 | |
|         "  mul %[i], %[scale]\n\t"
 | |
|         "  mov %[j], r1\n\t"
 | |
|         "  clr __zero_reg__\n\t"
 | |
|         "  cpse %[scale], r1\n\t"
 | |
|         "  subi %[j], 0xFF\n\t"
 | |
|         "L_%=: \n\t"
 | |
|         : [j] "+a" (j)
 | |
|         : [i] "a" (i), [scale] "a" (scale)
 | |
|         : "r0", "r1");
 | |
| 
 | |
|     return j;
 | |
|     // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | |
|     // asm volatile(
 | |
|     //      "      tst %0           \n"
 | |
|     //      "      breq L_%=        \n"
 | |
|     //      "      mul %0, %1       \n"
 | |
|     //      "      mov %0, r1       \n"
 | |
|     //      "      add %0, %2       \n"
 | |
|     //      "      clr __zero_reg__ \n"
 | |
|     //      "L_%=:                  \n"
 | |
| 
 | |
|     //      : "+a" (i)
 | |
|     //      : "a" (scale), "a" (nonzeroscale)
 | |
|     //      : "r0", "r1");
 | |
| 
 | |
|     // // Return the result
 | |
|     // return i;
 | |
| #else
 | |
| #error "No implementation for scale8_video available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This version of scale8 does not clean up the R1 register on AVR
 | |
| /// If you are doing several 'scale8's in a row, use this, and
 | |
| /// then explicitly call cleanup_R1.
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t scale8_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
 | |
| {
 | |
| #if SCALE8_C == 1
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|     return (((uint16_t)i) * ((uint16_t)(scale)+1)) >> 8;
 | |
| #else
 | |
|     return ((int)i * (int)(scale) ) >> 8;
 | |
| #endif
 | |
| #elif SCALE8_AVRASM == 1
 | |
|     asm volatile(
 | |
|       #if (FASTLED_SCALE8_FIXED==1)
 | |
|               // Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
 | |
|               "mul %0, %1          \n\t"
 | |
|               // Add i to r0, possibly setting the carry flag
 | |
|               "add r0, %0         \n\t"
 | |
|               // load the immediate 0 into i (note, this does _not_ touch any flags)
 | |
|               "ldi %0, 0x00       \n\t"
 | |
|               // walk and chew gum at the same time
 | |
|               "adc %0, r1          \n\t"
 | |
|       #else
 | |
|          /* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
 | |
|          "mul %0, %1    \n\t"
 | |
|          /* Move the high 8-bits of the product (r1) back to i */
 | |
|          "mov %0, r1    \n\t"
 | |
|       #endif
 | |
|          /* R1 IS LEFT DIRTY HERE; YOU MUST ZERO IT OUT YOURSELF  */
 | |
|          /* "clr __zero_reg__    \n\t" */
 | |
| 
 | |
|          : "+a" (i)      /* writes to i */
 | |
|          : "a"  (scale)  /* uses scale */
 | |
|          : "r0", "r1"    /* clobbers r0, r1 */ );
 | |
| 
 | |
|     // Return the result
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for scale8_LEAVING_R1_DIRTY available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This version of scale8_video does not clean up the R1 register on AVR
 | |
| /// If you are doing several 'scale8_video's in a row, use this, and
 | |
| /// then explicitly call cleanup_R1.
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
 | |
| {
 | |
| #if SCALE8_C == 1 || defined(LIB8_ATTINY)
 | |
|     uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
 | |
|     // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | |
|     // uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
 | |
|     return j;
 | |
| #elif SCALE8_AVRASM == 1
 | |
|     uint8_t j=0;
 | |
|     asm volatile(
 | |
|         "  tst %[i]\n\t"
 | |
|         "  breq L_%=\n\t"
 | |
|         "  mul %[i], %[scale]\n\t"
 | |
|         "  mov %[j], r1\n\t"
 | |
|         "  breq L_%=\n\t"
 | |
|         "  subi %[j], 0xFF\n\t"
 | |
|         "L_%=: \n\t"
 | |
|         : [j] "+a" (j)
 | |
|         : [i] "a" (i), [scale] "a" (scale)
 | |
|         : "r0", "r1");
 | |
| 
 | |
|     return j;
 | |
|     // uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
 | |
|     // asm volatile(
 | |
|     //      "      tst %0           \n"
 | |
|     //      "      breq L_%=        \n"
 | |
|     //      "      mul %0, %1       \n"
 | |
|     //      "      mov %0, r1       \n"
 | |
|     //      "      add %0, %2       \n"
 | |
|     //      "      clr __zero_reg__ \n"
 | |
|     //      "L_%=:                  \n"
 | |
| 
 | |
|     //      : "+a" (i)
 | |
|     //      : "a" (scale), "a" (nonzeroscale)
 | |
|     //      : "r0", "r1");
 | |
| 
 | |
|     // // Return the result
 | |
|     // return i;
 | |
| #else
 | |
| #error "No implementation for scale8_video_LEAVING_R1_DIRTY available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Clean up the r1 register after a series of *LEAVING_R1_DIRTY calls
 | |
| LIB8STATIC_ALWAYS_INLINE void cleanup_R1(void)
 | |
| {
 | |
| #if CLEANUP_R1_AVRASM == 1
 | |
|     // Restore r1 to "0"; it's expected to always be that
 | |
|     asm volatile( "clr __zero_reg__  \n\t" : : : "r1" );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// scale a 16-bit unsigned value by an 8-bit value,
 | |
| ///         considered as numerator of a fraction whose denominator
 | |
| ///         is 256. In other words, it computes i * (scale / 256)
 | |
| 
 | |
| LIB8STATIC_ALWAYS_INLINE uint16_t scale16by8( uint16_t i, fract8 scale )
 | |
| {
 | |
| #if SCALE16BY8_C == 1
 | |
|     uint16_t result;
 | |
| #if FASTLED_SCALE8_FIXED == 1
 | |
|     result = (i * (1+((uint16_t)scale))) >> 8;
 | |
| #else
 | |
|     result = (i * scale) / 256;
 | |
| #endif
 | |
|     return result;
 | |
| #elif SCALE16BY8_AVRASM == 1
 | |
| #if FASTLED_SCALE8_FIXED == 1
 | |
|     uint16_t result = 0;
 | |
|     asm volatile(
 | |
|                  // result.A = HighByte( (i.A x scale) + i.A )
 | |
|                  "  mul %A[i], %[scale]                 \n\t"
 | |
|                  "  add r0, %A[i]                       \n\t"
 | |
|             //   "  adc r1, [zero]                      \n\t"
 | |
|             //   "  mov %A[result], r1                  \n\t"
 | |
|                  "  adc %A[result], r1                  \n\t"
 | |
| 
 | |
|                  // result.A-B += i.B x scale
 | |
|                  "  mul %B[i], %[scale]                 \n\t"
 | |
|                  "  add %A[result], r0                  \n\t"
 | |
|                  "  adc %B[result], r1                  \n\t"
 | |
| 
 | |
|                  // cleanup r1
 | |
|                  "  clr __zero_reg__                    \n\t"
 | |
| 
 | |
|                  // result.A-B += i.B
 | |
|                  "  add %A[result], %B[i]               \n\t"
 | |
|                  "  adc %B[result], __zero_reg__        \n\t"
 | |
| 
 | |
|                  : [result] "+r" (result)
 | |
|                  : [i] "r" (i), [scale] "r" (scale)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
|     return result;
 | |
| #else
 | |
|     uint16_t result = 0;
 | |
|     asm volatile(
 | |
|          // result.A = HighByte(i.A x j )
 | |
|          "  mul %A[i], %[scale]                 \n\t"
 | |
|          "  mov %A[result], r1                  \n\t"
 | |
|          //"  clr %B[result]                      \n\t"
 | |
| 
 | |
|          // result.A-B += i.B x j
 | |
|          "  mul %B[i], %[scale]                 \n\t"
 | |
|          "  add %A[result], r0                  \n\t"
 | |
|          "  adc %B[result], r1                  \n\t"
 | |
| 
 | |
|          // cleanup r1
 | |
|          "  clr __zero_reg__                    \n\t"
 | |
| 
 | |
|          : [result] "+r" (result)
 | |
|          : [i] "r" (i), [scale] "r" (scale)
 | |
|          : "r0", "r1"
 | |
|          );
 | |
|     return result;
 | |
| #endif
 | |
| #else
 | |
|     #error "No implementation for scale16by8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// scale a 16-bit unsigned value by a 16-bit value,
 | |
| ///         considered as numerator of a fraction whose denominator
 | |
| ///         is 65536. In other words, it computes i * (scale / 65536)
 | |
| 
 | |
| LIB8STATIC uint16_t scale16( uint16_t i, fract16 scale )
 | |
| {
 | |
|   #if SCALE16_C == 1
 | |
|     uint16_t result;
 | |
| #if FASTLED_SCALE8_FIXED == 1
 | |
|     result = ((uint32_t)(i) * (1+(uint32_t)(scale))) / 65536;
 | |
| #else
 | |
|     result = ((uint32_t)(i) * (uint32_t)(scale)) / 65536;
 | |
| #endif
 | |
|     return result;
 | |
| #elif SCALE16_AVRASM == 1
 | |
| #if FASTLED_SCALE8_FIXED == 1
 | |
|     // implemented sort of like
 | |
|     //   result = ((i * scale) + i ) / 65536
 | |
|     //
 | |
|     // why not like this, you may ask?
 | |
|     //   result = (i * (scale+1)) / 65536
 | |
|     // the answer is that if scale is 65535, then scale+1
 | |
|     // will be zero, which is not what we want.
 | |
|     uint32_t result;
 | |
|     asm volatile(
 | |
|                  // result.A-B  = i.A x scale.A
 | |
|                  "  mul %A[i], %A[scale]                 \n\t"
 | |
|                  //  save results...
 | |
|                  // basic idea:
 | |
|                  //"  mov %A[result], r0                 \n\t"
 | |
|                  //"  mov %B[result], r1                 \n\t"
 | |
|                  // which can be written as...
 | |
|                  "  movw %A[result], r0                   \n\t"
 | |
|                  // Because we're going to add i.A-B to
 | |
|                  // result.A-D, we DO need to keep both
 | |
|                  // the r0 and r1 portions of the product
 | |
|                  // UNlike in the 'unfixed scale8' version.
 | |
|                  // So the movw here is needed.
 | |
|                  : [result] "=r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                  [scale] "r" (scale)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
| 
 | |
|     asm volatile(
 | |
|                  // result.C-D  = i.B x scale.B
 | |
|                  "  mul %B[i], %B[scale]                 \n\t"
 | |
|                  //"  mov %C[result], r0                 \n\t"
 | |
|                  //"  mov %D[result], r1                 \n\t"
 | |
|                  "  movw %C[result], r0                   \n\t"
 | |
|                  : [result] "+r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                  [scale] "r" (scale)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
| 
 | |
|     const uint8_t  zero = 0;
 | |
|     asm volatile(
 | |
|                  // result.B-D += i.B x scale.A
 | |
|                  "  mul %B[i], %A[scale]                 \n\t"
 | |
| 
 | |
|                  "  add %B[result], r0                   \n\t"
 | |
|                  "  adc %C[result], r1                   \n\t"
 | |
|                  "  adc %D[result], %[zero]              \n\t"
 | |
| 
 | |
|                  // result.B-D += i.A x scale.B
 | |
|                  "  mul %A[i], %B[scale]                 \n\t"
 | |
| 
 | |
|                  "  add %B[result], r0                   \n\t"
 | |
|                  "  adc %C[result], r1                   \n\t"
 | |
|                  "  adc %D[result], %[zero]              \n\t"
 | |
| 
 | |
|                  // cleanup r1
 | |
|                  "  clr r1                               \n\t"
 | |
| 
 | |
|                  : [result] "+r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                  [scale] "r" (scale),
 | |
|                  [zero] "r" (zero)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
| 
 | |
|     asm volatile(
 | |
|                  // result.A-D += i.A-B
 | |
|                  "  add %A[result], %A[i]                \n\t"
 | |
|                  "  adc %B[result], %B[i]                \n\t"
 | |
|                  "  adc %C[result], %[zero]              \n\t"
 | |
|                  "  adc %D[result], %[zero]              \n\t"
 | |
|                  : [result] "+r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                  [zero] "r" (zero)
 | |
|                  );
 | |
| 
 | |
|     result = result >> 16;
 | |
|     return result;
 | |
| #else
 | |
|     uint32_t result;
 | |
|     asm volatile(
 | |
|                  // result.A-B  = i.A x scale.A
 | |
|                  "  mul %A[i], %A[scale]                 \n\t"
 | |
|                  //  save results...
 | |
|                  // basic idea:
 | |
|                  //"  mov %A[result], r0                 \n\t"
 | |
|                  //"  mov %B[result], r1                 \n\t"
 | |
|                  // which can be written as...
 | |
|                  "  movw %A[result], r0                   \n\t"
 | |
|                  // We actually don't need to do anything with r0,
 | |
|                  // as result.A is never used again here, so we
 | |
|                  // could just move the high byte, but movw is
 | |
|                  // one clock cycle, just like mov, so might as
 | |
|                  // well, in case we want to use this code for
 | |
|                  // a generic 16x16 multiply somewhere.
 | |
| 
 | |
|                  : [result] "=r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                    [scale] "r" (scale)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
| 
 | |
|     asm volatile(
 | |
|                  // result.C-D  = i.B x scale.B
 | |
|                  "  mul %B[i], %B[scale]                 \n\t"
 | |
|                  //"  mov %C[result], r0                 \n\t"
 | |
|                  //"  mov %D[result], r1                 \n\t"
 | |
|                  "  movw %C[result], r0                   \n\t"
 | |
|                  : [result] "+r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                    [scale] "r" (scale)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
| 
 | |
|     const uint8_t  zero = 0;
 | |
|     asm volatile(
 | |
|                  // result.B-D += i.B x scale.A
 | |
|                  "  mul %B[i], %A[scale]                 \n\t"
 | |
| 
 | |
|                  "  add %B[result], r0                   \n\t"
 | |
|                  "  adc %C[result], r1                   \n\t"
 | |
|                  "  adc %D[result], %[zero]              \n\t"
 | |
| 
 | |
|                  // result.B-D += i.A x scale.B
 | |
|                  "  mul %A[i], %B[scale]                 \n\t"
 | |
| 
 | |
|                  "  add %B[result], r0                   \n\t"
 | |
|                  "  adc %C[result], r1                   \n\t"
 | |
|                  "  adc %D[result], %[zero]              \n\t"
 | |
| 
 | |
|                  // cleanup r1
 | |
|                  "  clr r1                               \n\t"
 | |
| 
 | |
|                  : [result] "+r" (result)
 | |
|                  : [i] "r" (i),
 | |
|                    [scale] "r" (scale),
 | |
|                    [zero] "r" (zero)
 | |
|                  : "r0", "r1"
 | |
|                  );
 | |
| 
 | |
|     result = result >> 16;
 | |
|     return result;
 | |
| #endif
 | |
| #else
 | |
|     #error "No implementation for scale16 available."
 | |
| #endif
 | |
| }
 | |
| ///@}
 | |
| 
 | |
| ///@defgroup Dimming Dimming and brightening functions
 | |
| ///
 | |
| /// Dimming and brightening functions
 | |
| ///
 | |
| /// The eye does not respond in a linear way to light.
 | |
| /// High speed PWM'd LEDs at 50% duty cycle appear far
 | |
| /// brighter then the 'half as bright' you might expect.
 | |
| ///
 | |
| /// If you want your midpoint brightness leve (128) to
 | |
| /// appear half as bright as 'full' brightness (255), you
 | |
| /// have to apply a 'dimming function'.
 | |
| ///@{
 | |
| 
 | |
| /// Adjust a scaling value for dimming
 | |
| LIB8STATIC uint8_t dim8_raw( uint8_t x)
 | |
| {
 | |
|     return scale8( x, x);
 | |
| }
 | |
| 
 | |
| /// Adjust a scaling value for dimming for video (value will never go below 1)
 | |
| LIB8STATIC uint8_t dim8_video( uint8_t x)
 | |
| {
 | |
|     return scale8_video( x, x);
 | |
| }
 | |
| 
 | |
| /// Linear version of the dimming function that halves for values < 128
 | |
| LIB8STATIC uint8_t dim8_lin( uint8_t x )
 | |
| {
 | |
|     if( x & 0x80 ) {
 | |
|         x = scale8( x, x);
 | |
|     } else {
 | |
|         x += 1;
 | |
|         x /= 2;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /// inverse of the dimming function, brighten a value
 | |
| LIB8STATIC uint8_t brighten8_raw( uint8_t x)
 | |
| {
 | |
|     uint8_t ix = 255 - x;
 | |
|     return 255 - scale8( ix, ix);
 | |
| }
 | |
| 
 | |
| /// inverse of the dimming function, brighten a value
 | |
| LIB8STATIC uint8_t brighten8_video( uint8_t x)
 | |
| {
 | |
|     uint8_t ix = 255 - x;
 | |
|     return 255 - scale8_video( ix, ix);
 | |
| }
 | |
| 
 | |
| /// inverse of the dimming function, brighten a value
 | |
| LIB8STATIC uint8_t brighten8_lin( uint8_t x )
 | |
| {
 | |
|     uint8_t ix = 255 - x;
 | |
|     if( ix & 0x80 ) {
 | |
|         ix = scale8( ix, ix);
 | |
|     } else {
 | |
|         ix += 1;
 | |
|         ix /= 2;
 | |
|     }
 | |
|     return 255 - ix;
 | |
| }
 | |
| 
 | |
| ///@}
 | |
| #endif
 |