934 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			934 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __INC_LIB8TION_H
 | |
| #define __INC_LIB8TION_H
 | |
| 
 | |
| /*
 | |
| 
 | |
|  Fast, efficient 8-bit math functions specifically
 | |
|  designed for high-performance LED programming.
 | |
| 
 | |
|  Because of the AVR(Arduino) and ARM assembly language
 | |
|  implementations provided, using these functions often
 | |
|  results in smaller and faster code than the equivalent
 | |
|  program using plain "C" arithmetic and logic.
 | |
| 
 | |
| 
 | |
|  Included are:
 | |
| 
 | |
| 
 | |
|  - Saturating unsigned 8-bit add and subtract.
 | |
|    Instead of wrapping around if an overflow occurs,
 | |
|    these routines just 'clamp' the output at a maxumum
 | |
|    of 255, or a minimum of 0.  Useful for adding pixel
 | |
|    values.  E.g., qadd8( 200, 100) = 255.
 | |
| 
 | |
|      qadd8( i, j) == MIN( (i + j), 0xFF )
 | |
|      qsub8( i, j) == MAX( (i - j), 0 )
 | |
| 
 | |
|  - Saturating signed 8-bit ("7-bit") add.
 | |
|      qadd7( i, j) == MIN( (i + j), 0x7F)
 | |
| 
 | |
| 
 | |
|  - Scaling (down) of unsigned 8- and 16- bit values.
 | |
|    Scaledown value is specified in 1/256ths.
 | |
|      scale8( i, sc) == (i * sc) / 256
 | |
|      scale16by8( i, sc) == (i * sc) / 256
 | |
| 
 | |
|    Example: scaling a 0-255 value down into a
 | |
|    range from 0-99:
 | |
|      downscaled = scale8( originalnumber, 100);
 | |
| 
 | |
|    A special version of scale8 is provided for scaling
 | |
|    LED brightness values, to make sure that they don't
 | |
|    accidentally scale down to total black at low
 | |
|    dimming levels, since that would look wrong:
 | |
|      scale8_video( i, sc) = ((i * sc) / 256) +? 1
 | |
| 
 | |
|    Example: reducing an LED brightness by a
 | |
|    dimming factor:
 | |
|      new_bright = scale8_video( orig_bright, dimming);
 | |
| 
 | |
| 
 | |
|  - Fast 8- and 16- bit unsigned random numbers.
 | |
|    Significantly faster than Arduino random(), but
 | |
|    also somewhat less random.  You can add entropy.
 | |
|      random8()       == random from 0..255
 | |
|      random8( n)     == random from 0..(N-1)
 | |
|      random8( n, m)  == random from N..(M-1)
 | |
| 
 | |
|      random16()      == random from 0..65535
 | |
|      random16( n)    == random from 0..(N-1)
 | |
|      random16( n, m) == random from N..(M-1)
 | |
| 
 | |
|      random16_set_seed( k)    ==  seed = k
 | |
|      random16_add_entropy( k) ==  seed += k
 | |
| 
 | |
| 
 | |
|  - Absolute value of a signed 8-bit value.
 | |
|      abs8( i)     == abs( i)
 | |
| 
 | |
| 
 | |
|  - 8-bit math operations which return 8-bit values.
 | |
|    These are provided mostly for completeness,
 | |
|    not particularly for performance.
 | |
|      mul8( i, j)  == (i * j) & 0xFF
 | |
|      add8( i, j)  == (i + j) & 0xFF
 | |
|      sub8( i, j)  == (i - j) & 0xFF
 | |
| 
 | |
| 
 | |
|  - Fast 16-bit approximations of sin and cos.
 | |
|    Input angle is a uint16_t from 0-65535.
 | |
|    Output is a signed int16_t from -32767 to 32767.
 | |
|       sin16( x)  == sin( (x/32768.0) * pi) * 32767
 | |
|       cos16( x)  == cos( (x/32768.0) * pi) * 32767
 | |
|    Accurate to more than 99% in all cases.
 | |
| 
 | |
|  - Fast 8-bit approximations of sin and cos.
 | |
|    Input angle is a uint8_t from 0-255.
 | |
|    Output is an UNsigned uint8_t from 0 to 255.
 | |
|        sin8( x)  == (sin( (x/128.0) * pi) * 128) + 128
 | |
|        cos8( x)  == (cos( (x/128.0) * pi) * 128) + 128
 | |
|    Accurate to within about 2%.
 | |
| 
 | |
| 
 | |
|  - Fast 8-bit "easing in/out" function.
 | |
|      ease8InOutCubic(x) == 3(x^i) - 2(x^3)
 | |
|      ease8InOutApprox(x) ==
 | |
|        faster, rougher, approximation of cubic easing
 | |
|      ease8InOutQuad(x) == quadratic (vs cubic) easing
 | |
| 
 | |
|  - Cubic, Quadratic, and Triangle wave functions.
 | |
|    Input is a uint8_t representing phase withing the wave,
 | |
|      similar to how sin8 takes an angle 'theta'.
 | |
|    Output is a uint8_t representing the amplitude of
 | |
|      the wave at that point.
 | |
|        cubicwave8( x)
 | |
|        quadwave8( x)
 | |
|        triwave8( x)
 | |
| 
 | |
|  - Square root for 16-bit integers.  About three times
 | |
|    faster and five times smaller than Arduino's built-in
 | |
|    generic 32-bit sqrt routine.
 | |
|      sqrt16( uint16_t x ) == sqrt( x)
 | |
| 
 | |
|  - Dimming and brightening functions for 8-bit
 | |
|    light values.
 | |
|      dim8_video( x)  == scale8_video( x, x)
 | |
|      dim8_raw( x)    == scale8( x, x)
 | |
|      dim8_lin( x)    == (x<128) ? ((x+1)/2) : scale8(x,x)
 | |
|      brighten8_video( x) == 255 - dim8_video( 255 - x)
 | |
|      brighten8_raw( x) == 255 - dim8_raw( 255 - x)
 | |
|      brighten8_lin( x) == 255 - dim8_lin( 255 - x)
 | |
|    The dimming functions in particular are suitable
 | |
|    for making LED light output appear more 'linear'.
 | |
| 
 | |
| 
 | |
|  - Linear interpolation between two values, with the
 | |
|    fraction between them expressed as an 8- or 16-bit
 | |
|    fixed point fraction (fract8 or fract16).
 | |
|      lerp8by8(   fromU8, toU8, fract8 )
 | |
|      lerp16by8(  fromU16, toU16, fract8 )
 | |
|      lerp15by8(  fromS16, toS16, fract8 )
 | |
|        == from + (( to - from ) * fract8) / 256)
 | |
|      lerp16by16( fromU16, toU16, fract16 )
 | |
|        == from + (( to - from ) * fract16) / 65536)
 | |
|      map8( in, rangeStart, rangeEnd)
 | |
|        == map( in, 0, 255, rangeStart, rangeEnd);
 | |
| 
 | |
|  - Optimized memmove, memcpy, and memset, that are
 | |
|    faster than standard avr-libc 1.8.
 | |
|       memmove8( dest, src,  bytecount)
 | |
|       memcpy8(  dest, src,  bytecount)
 | |
|       memset8(  buf, value, bytecount)
 | |
| 
 | |
|  - Beat generators which return sine or sawtooth
 | |
|    waves in a specified number of Beats Per Minute.
 | |
|    Sine wave beat generators can specify a low and
 | |
|    high range for the output.  Sawtooth wave beat
 | |
|    generators always range 0-255 or 0-65535.
 | |
|      beatsin8( BPM, low8, high8)
 | |
|          = (sine(beatphase) * (high8-low8)) + low8
 | |
|      beatsin16( BPM, low16, high16)
 | |
|          = (sine(beatphase) * (high16-low16)) + low16
 | |
|      beatsin88( BPM88, low16, high16)
 | |
|          = (sine(beatphase) * (high16-low16)) + low16
 | |
|      beat8( BPM)  = 8-bit repeating sawtooth wave
 | |
|      beat16( BPM) = 16-bit repeating sawtooth wave
 | |
|      beat88( BPM88) = 16-bit repeating sawtooth wave
 | |
|    BPM is beats per minute in either simple form
 | |
|    e.g. 120, or Q8.8 fixed-point form.
 | |
|    BPM88 is beats per minute in ONLY Q8.8 fixed-point
 | |
|    form.
 | |
| 
 | |
| Lib8tion is pronounced like 'libation': lie-BAY-shun
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #define LIB8STATIC static inline
 | |
| #define LIB8STATIC_ALWAYS_INLINE static inline
 | |
| 
 | |
| #if !defined(__AVR__)
 | |
| #include <string.h>
 | |
| // for memmove, memcpy, and memset if not defined here
 | |
| #endif
 | |
| 
 | |
| #if defined(__arm__)
 | |
| 
 | |
| #if defined(FASTLED_TEENSY3)
 | |
| // Can use Cortex M4 DSP instructions
 | |
| #define QADD8_C 0
 | |
| #define QADD7_C 0
 | |
| #define QADD8_ARM_DSP_ASM 1
 | |
| #define QADD7_ARM_DSP_ASM 1
 | |
| #else
 | |
| // Generic ARM
 | |
| #define QADD8_C 1
 | |
| #define QADD7_C 1
 | |
| #endif
 | |
| 
 | |
| #define QSUB8_C 1
 | |
| #define SCALE8_C 1
 | |
| #define SCALE16BY8_C 1
 | |
| #define SCALE16_C 1
 | |
| #define ABS8_C 1
 | |
| #define MUL8_C 1
 | |
| #define QMUL8_C 1
 | |
| #define ADD8_C 1
 | |
| #define SUB8_C 1
 | |
| #define EASE8_C 1
 | |
| #define AVG8_C 1
 | |
| #define AVG7_C 1
 | |
| #define AVG16_C 1
 | |
| #define AVG15_C 1
 | |
| #define BLEND8_C 1
 | |
| 
 | |
| 
 | |
| #elif defined(__AVR__)
 | |
| 
 | |
| // AVR ATmega and friends Arduino
 | |
| 
 | |
| #define QADD8_C 0
 | |
| #define QADD7_C 0
 | |
| #define QSUB8_C 0
 | |
| #define ABS8_C 0
 | |
| #define ADD8_C 0
 | |
| #define SUB8_C 0
 | |
| #define AVG8_C 0
 | |
| #define AVG7_C 0
 | |
| #define AVG16_C 0
 | |
| #define AVG15_C 0
 | |
| 
 | |
| #define QADD8_AVRASM 1
 | |
| #define QADD7_AVRASM 1
 | |
| #define QSUB8_AVRASM 1
 | |
| #define ABS8_AVRASM 1
 | |
| #define ADD8_AVRASM 1
 | |
| #define SUB8_AVRASM 1
 | |
| #define AVG8_AVRASM 1
 | |
| #define AVG7_AVRASM 1
 | |
| #define AVG16_AVRASM 1
 | |
| #define AVG15_AVRASM 1
 | |
| 
 | |
| // Note: these require hardware MUL instruction
 | |
| //       -- sorry, ATtiny!
 | |
| #if !defined(LIB8_ATTINY)
 | |
| #define SCALE8_C 0
 | |
| #define SCALE16BY8_C 0
 | |
| #define SCALE16_C 0
 | |
| #define MUL8_C 0
 | |
| #define QMUL8_C 0
 | |
| #define EASE8_C 0
 | |
| #define BLEND8_C 0
 | |
| #define SCALE8_AVRASM 1
 | |
| #define SCALE16BY8_AVRASM 1
 | |
| #define SCALE16_AVRASM 1
 | |
| #define MUL8_AVRASM 1
 | |
| #define QMUL8_AVRASM 1
 | |
| #define EASE8_AVRASM 1
 | |
| #define CLEANUP_R1_AVRASM 1
 | |
| #define BLEND8_AVRASM 1
 | |
| #else
 | |
| // On ATtiny, we just use C implementations
 | |
| #define SCALE8_C 1
 | |
| #define SCALE16BY8_C 1
 | |
| #define SCALE16_C 1
 | |
| #define MUL8_C 1
 | |
| #define QMUL8_C 1
 | |
| #define EASE8_C 1
 | |
| #define BLEND8_C 1
 | |
| #define SCALE8_AVRASM 0
 | |
| #define SCALE16BY8_AVRASM 0
 | |
| #define SCALE16_AVRASM 0
 | |
| #define MUL8_AVRASM 0
 | |
| #define QMUL8_AVRASM 0
 | |
| #define EASE8_AVRASM 0
 | |
| #define BLEND8_AVRASM 0
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 
 | |
| // unspecified architecture, so
 | |
| // no ASM, everything in C
 | |
| #define QADD8_C 1
 | |
| #define QADD7_C 1
 | |
| #define QSUB8_C 1
 | |
| #define SCALE8_C 1
 | |
| #define SCALE16BY8_C 1
 | |
| #define SCALE16_C 1
 | |
| #define ABS8_C 1
 | |
| #define MUL8_C 1
 | |
| #define QMUL8_C 1
 | |
| #define ADD8_C 1
 | |
| #define SUB8_C 1
 | |
| #define EASE8_C 1
 | |
| #define AVG8_C 1
 | |
| #define AVG7_C 1
 | |
| #define AVG16_C 1
 | |
| #define AVG15_C 1
 | |
| #define BLEND8_C 1
 | |
| 
 | |
| #endif
 | |
| 
 | |
| ///@defgroup lib8tion Fast math functions
 | |
| ///A variety of functions for working with numbers.
 | |
| ///@{
 | |
| 
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // typdefs for fixed-point fractional types.
 | |
| //
 | |
| // sfract7 should be interpreted as signed 128ths.
 | |
| // fract8 should be interpreted as unsigned 256ths.
 | |
| // sfract15 should be interpreted as signed 32768ths.
 | |
| // fract16 should be interpreted as unsigned 65536ths.
 | |
| //
 | |
| // Example: if a fract8 has the value "64", that should be interpreted
 | |
| //          as 64/256ths, or one-quarter.
 | |
| //
 | |
| //
 | |
| //  fract8   range is 0 to 0.99609375
 | |
| //                 in steps of 0.00390625
 | |
| //
 | |
| //  sfract7  range is -0.9921875 to 0.9921875
 | |
| //                 in steps of 0.0078125
 | |
| //
 | |
| //  fract16  range is 0 to 0.99998474121
 | |
| //                 in steps of 0.00001525878
 | |
| //
 | |
| //  sfract15 range is -0.99996948242 to 0.99996948242
 | |
| //                 in steps of 0.00003051757
 | |
| //
 | |
| 
 | |
| /// ANSI unsigned short _Fract.  range is 0 to 0.99609375
 | |
| ///                 in steps of 0.00390625
 | |
| typedef uint8_t   fract8;   ///< ANSI: unsigned short _Fract
 | |
| 
 | |
| ///  ANSI: signed short _Fract.  range is -0.9921875 to 0.9921875
 | |
| ///                 in steps of 0.0078125
 | |
| typedef int8_t    sfract7;  ///< ANSI: signed   short _Fract
 | |
| 
 | |
| ///  ANSI: unsigned _Fract.  range is 0 to 0.99998474121
 | |
| ///                 in steps of 0.00001525878
 | |
| typedef uint16_t  fract16;  ///< ANSI: unsigned       _Fract
 | |
| 
 | |
| ///  ANSI: signed _Fract.  range is -0.99996948242 to 0.99996948242
 | |
| ///                 in steps of 0.00003051757
 | |
| typedef int16_t   sfract15; ///< ANSI: signed         _Fract
 | |
| 
 | |
| 
 | |
| // accumXY types should be interpreted as X bits of integer,
 | |
| //         and Y bits of fraction.
 | |
| //         E.g., accum88 has 8 bits of int, 8 bits of fraction
 | |
| 
 | |
| typedef uint16_t  accum88;  ///< ANSI: unsigned short _Accum.  8 bits int, 8 bits fraction
 | |
| typedef int16_t   saccum78; ///< ANSI: signed   short _Accum.  7 bits int, 8 bits fraction
 | |
| typedef uint32_t  accum1616;///< ANSI: signed         _Accum. 16 bits int, 16 bits fraction
 | |
| typedef int32_t   saccum1516;///< ANSI: signed         _Accum. 15 bits int, 16 bits fraction
 | |
| typedef uint16_t  accum124; ///< no direct ANSI counterpart. 12 bits int, 4 bits fraction
 | |
| typedef int32_t   saccum114;///< no direct ANSI counterpart. 1 bit int, 14 bits fraction
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "math8.h"
 | |
| #include "scale8.h"
 | |
| #include "random8.h"
 | |
| #include "trig8.h"
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // float-to-fixed and fixed-to-float conversions
 | |
| //
 | |
| // Note that anything involving a 'float' on AVR will be slower.
 | |
| 
 | |
| /// sfract15ToFloat: conversion from sfract15 fixed point to
 | |
| ///                  IEEE754 32-bit float.
 | |
| LIB8STATIC float sfract15ToFloat( sfract15 y)
 | |
| {
 | |
|     return y / 32768.0;
 | |
| }
 | |
| 
 | |
| /// conversion from IEEE754 float in the range (-1,1)
 | |
| ///                  to 16-bit fixed point.  Note that the extremes of
 | |
| ///                  one and negative one are NOT representable.  The
 | |
| ///                  representable range is basically
 | |
| LIB8STATIC sfract15 floatToSfract15( float f)
 | |
| {
 | |
|     return f * 32768.0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // memmove8, memcpy8, and memset8:
 | |
| //   alternatives to memmove, memcpy, and memset that are
 | |
| //   faster on AVR than standard avr-libc 1.8
 | |
| 
 | |
| #if defined(__AVR__)
 | |
| void * memmove8( void * dst, const void * src, uint16_t num );
 | |
| void * memcpy8 ( void * dst, const void * src, uint16_t num )  __attribute__ ((noinline));
 | |
| void * memset8 ( void * ptr, uint8_t value, uint16_t num ) __attribute__ ((noinline)) ;
 | |
| #else
 | |
| // on non-AVR platforms, these names just call standard libc.
 | |
| #define memmove8 memmove
 | |
| #define memcpy8 memcpy
 | |
| #define memset8 memset
 | |
| #endif
 | |
| 
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // linear interpolation, such as could be used for Perlin noise, etc.
 | |
| //
 | |
| 
 | |
| // A note on the structure of the lerp functions:
 | |
| // The cases for b>a and b<=a are handled separately for
 | |
| // speed: without knowing the relative order of a and b,
 | |
| // the value (a-b) might be overflow the width of a or b,
 | |
| // and have to be promoted to a wider, slower type.
 | |
| // To avoid that, we separate the two cases, and are able
 | |
| // to do all the math in the same width as the arguments,
 | |
| // which is much faster and smaller on AVR.
 | |
| 
 | |
| /// linear interpolation between two unsigned 8-bit values,
 | |
| /// with 8-bit fraction
 | |
| LIB8STATIC uint8_t lerp8by8( uint8_t a, uint8_t b, fract8 frac)
 | |
| {
 | |
|     uint8_t result;
 | |
|     if( b > a) {
 | |
|         uint8_t delta = b - a;
 | |
|         uint8_t scaled = scale8( delta, frac);
 | |
|         result = a + scaled;
 | |
|     } else {
 | |
|         uint8_t delta = a - b;
 | |
|         uint8_t scaled = scale8( delta, frac);
 | |
|         result = a - scaled;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// linear interpolation between two unsigned 16-bit values,
 | |
| /// with 16-bit fraction
 | |
| LIB8STATIC uint16_t lerp16by16( uint16_t a, uint16_t b, fract16 frac)
 | |
| {
 | |
|     uint16_t result;
 | |
|     if( b > a ) {
 | |
|         uint16_t delta = b - a;
 | |
|         uint16_t scaled = scale16(delta, frac);
 | |
|         result = a + scaled;
 | |
|     } else {
 | |
|         uint16_t delta = a - b;
 | |
|         uint16_t scaled = scale16( delta, frac);
 | |
|         result = a - scaled;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// linear interpolation between two unsigned 16-bit values,
 | |
| /// with 8-bit fraction
 | |
| LIB8STATIC uint16_t lerp16by8( uint16_t a, uint16_t b, fract8 frac)
 | |
| {
 | |
|     uint16_t result;
 | |
|     if( b > a) {
 | |
|         uint16_t delta = b - a;
 | |
|         uint16_t scaled = scale16by8( delta, frac);
 | |
|         result = a + scaled;
 | |
|     } else {
 | |
|         uint16_t delta = a - b;
 | |
|         uint16_t scaled = scale16by8( delta, frac);
 | |
|         result = a - scaled;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// linear interpolation between two signed 15-bit values,
 | |
| /// with 8-bit fraction
 | |
| LIB8STATIC int16_t lerp15by8( int16_t a, int16_t b, fract8 frac)
 | |
| {
 | |
|     int16_t result;
 | |
|     if( b > a) {
 | |
|         uint16_t delta = b - a;
 | |
|         uint16_t scaled = scale16by8( delta, frac);
 | |
|         result = a + scaled;
 | |
|     } else {
 | |
|         uint16_t delta = a - b;
 | |
|         uint16_t scaled = scale16by8( delta, frac);
 | |
|         result = a - scaled;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// linear interpolation between two signed 15-bit values,
 | |
| /// with 8-bit fraction
 | |
| LIB8STATIC int16_t lerp15by16( int16_t a, int16_t b, fract16 frac)
 | |
| {
 | |
|     int16_t result;
 | |
|     if( b > a) {
 | |
|         uint16_t delta = b - a;
 | |
|         uint16_t scaled = scale16( delta, frac);
 | |
|         result = a + scaled;
 | |
|     } else {
 | |
|         uint16_t delta = a - b;
 | |
|         uint16_t scaled = scale16( delta, frac);
 | |
|         result = a - scaled;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ///  map8: map from one full-range 8-bit value into a narrower
 | |
| /// range of 8-bit values, possibly a range of hues.
 | |
| ///
 | |
| /// E.g. map myValue into a hue in the range blue..purple..pink..red
 | |
| /// hue = map8( myValue, HUE_BLUE, HUE_RED);
 | |
| ///
 | |
| /// Combines nicely with the waveform functions (like sin8, etc)
 | |
| /// to produce continuous hue gradients back and forth:
 | |
| ///
 | |
| ///          hue = map8( sin8( myValue), HUE_BLUE, HUE_RED);
 | |
| ///
 | |
| /// Mathematically simiar to lerp8by8, but arguments are more
 | |
| /// like Arduino's "map"; this function is similar to
 | |
| ///
 | |
| ///          map( in, 0, 255, rangeStart, rangeEnd)
 | |
| ///
 | |
| /// but faster and specifically designed for 8-bit values.
 | |
| LIB8STATIC uint8_t map8( uint8_t in, uint8_t rangeStart, uint8_t rangeEnd)
 | |
| {
 | |
|     uint8_t rangeWidth = rangeEnd - rangeStart;
 | |
|     uint8_t out = scale8( in, rangeWidth);
 | |
|     out += rangeStart;
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // easing functions; see http://easings.net
 | |
| //
 | |
| 
 | |
| /// ease8InOutQuad: 8-bit quadratic ease-in / ease-out function
 | |
| ///                Takes around 13 cycles on AVR
 | |
| #if EASE8_C == 1
 | |
| LIB8STATIC uint8_t ease8InOutQuad( uint8_t i)
 | |
| {
 | |
|     uint8_t j = i;
 | |
|     if( j & 0x80 ) {
 | |
|         j = 255 - j;
 | |
|     }
 | |
|     uint8_t jj  = scale8(  j, j);
 | |
|     uint8_t jj2 = jj << 1;
 | |
|     if( i & 0x80 ) {
 | |
|         jj2 = 255 - jj2;
 | |
|     }
 | |
|     return jj2;
 | |
| }
 | |
| 
 | |
| #elif EASE8_AVRASM == 1
 | |
| // This AVR asm version of ease8InOutQuad preserves one more
 | |
| // low-bit of precision than the C version, and is also slightly
 | |
| // smaller and faster.
 | |
| LIB8STATIC uint8_t ease8InOutQuad(uint8_t val) {
 | |
|     uint8_t j=val;
 | |
|     asm volatile (
 | |
|       "sbrc %[val], 7 \n"
 | |
|       "com %[j]       \n"
 | |
|       "mul %[j], %[j] \n"
 | |
|       "add r0, %[j]   \n"
 | |
|       "ldi %[j], 0    \n"
 | |
|       "adc %[j], r1   \n"
 | |
|       "lsl r0         \n" // carry = high bit of low byte of mul product
 | |
|       "rol %[j]       \n" // j = (j * 2) + carry // preserve add'l bit of precision
 | |
|       "sbrc %[val], 7 \n"
 | |
|       "com %[j]       \n"
 | |
|       "clr __zero_reg__   \n"
 | |
|       : [j] "+&a" (j)
 | |
|       : [val] "a" (val)
 | |
|       : "r0", "r1"
 | |
|       );
 | |
|     return j;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #error "No implementation for ease8InOutQuad available."
 | |
| #endif
 | |
| 
 | |
| /// ease16InOutQuad: 16-bit quadratic ease-in / ease-out function
 | |
| // C implementation at this point
 | |
| LIB8STATIC uint16_t ease16InOutQuad( uint16_t i)
 | |
| {
 | |
|     uint16_t j = i;
 | |
|     if( j & 0x8000 ) {
 | |
|         j = 65535 - j;
 | |
|     }
 | |
|     uint16_t jj  = scale16( j, j);
 | |
|     uint16_t jj2 = jj << 1;
 | |
|     if( i & 0x8000 ) {
 | |
|         jj2 = 65535 - jj2;
 | |
|     }
 | |
|     return jj2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ease8InOutCubic: 8-bit cubic ease-in / ease-out function
 | |
| ///                 Takes around 18 cycles on AVR
 | |
| LIB8STATIC fract8 ease8InOutCubic( fract8 i)
 | |
| {
 | |
|     uint8_t ii  = scale8_LEAVING_R1_DIRTY(  i, i);
 | |
|     uint8_t iii = scale8_LEAVING_R1_DIRTY( ii, i);
 | |
| 
 | |
|     uint16_t r1 = (3 * (uint16_t)(ii)) - ( 2 * (uint16_t)(iii));
 | |
| 
 | |
|     /* the code generated for the above *'s automatically
 | |
|        cleans up R1, so there's no need to explicitily call
 | |
|        cleanup_R1(); */
 | |
| 
 | |
|     uint8_t result = r1;
 | |
| 
 | |
|     // if we got "256", return 255:
 | |
|     if( r1 & 0x100 ) {
 | |
|         result = 255;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// ease8InOutApprox: fast, rough 8-bit ease-in/ease-out function
 | |
| ///                   shaped approximately like 'ease8InOutCubic',
 | |
| ///                   it's never off by more than a couple of percent
 | |
| ///                   from the actual cubic S-curve, and it executes
 | |
| ///                   more than twice as fast.  Use when the cycles
 | |
| ///                   are more important than visual smoothness.
 | |
| ///                   Asm version takes around 7 cycles on AVR.
 | |
| 
 | |
| #if EASE8_C == 1
 | |
| LIB8STATIC fract8 ease8InOutApprox( fract8 i)
 | |
| {
 | |
|     if( i < 64) {
 | |
|         // start with slope 0.5
 | |
|         i /= 2;
 | |
|     } else if( i > (255 - 64)) {
 | |
|         // end with slope 0.5
 | |
|         i = 255 - i;
 | |
|         i /= 2;
 | |
|         i = 255 - i;
 | |
|     } else {
 | |
|         // in the middle, use slope 192/128 = 1.5
 | |
|         i -= 64;
 | |
|         i += (i / 2);
 | |
|         i += 32;
 | |
|     }
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| #elif EASE8_AVRASM == 1
 | |
| LIB8STATIC uint8_t ease8InOutApprox( fract8 i)
 | |
| {
 | |
|     // takes around 7 cycles on AVR
 | |
|     asm volatile (
 | |
|         "  subi %[i], 64         \n\t"
 | |
|         "  cpi  %[i], 128        \n\t"
 | |
|         "  brcc Lshift_%=        \n\t"
 | |
| 
 | |
|         // middle case
 | |
|         "  mov __tmp_reg__, %[i] \n\t"
 | |
|         "  lsr __tmp_reg__       \n\t"
 | |
|         "  add %[i], __tmp_reg__ \n\t"
 | |
|         "  subi %[i], 224        \n\t"
 | |
|         "  rjmp Ldone_%=         \n\t"
 | |
| 
 | |
|         // start or end case
 | |
|         "Lshift_%=:              \n\t"
 | |
|         "  lsr %[i]              \n\t"
 | |
|         "  subi %[i], 96         \n\t"
 | |
| 
 | |
|         "Ldone_%=:               \n\t"
 | |
| 
 | |
|         : [i] "+&a" (i)
 | |
|         :
 | |
|         : "r0", "r1"
 | |
|         );
 | |
|     return i;
 | |
| }
 | |
| #else
 | |
| #error "No implementation for ease8 available."
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| /// triwave8: triangle (sawtooth) wave generator.  Useful for
 | |
| ///           turning a one-byte ever-increasing value into a
 | |
| ///           one-byte value that oscillates up and down.
 | |
| ///
 | |
| ///           input         output
 | |
| ///           0..127        0..254 (positive slope)
 | |
| ///           128..255      254..0 (negative slope)
 | |
| ///
 | |
| /// On AVR this function takes just three cycles.
 | |
| ///
 | |
| LIB8STATIC uint8_t triwave8(uint8_t in)
 | |
| {
 | |
|     if( in & 0x80) {
 | |
|         in = 255 - in;
 | |
|     }
 | |
|     uint8_t out = in << 1;
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| 
 | |
| // quadwave8 and cubicwave8: S-shaped wave generators (like 'sine').
 | |
| //           Useful for turning a one-byte 'counter' value into a
 | |
| //           one-byte oscillating value that moves smoothly up and down,
 | |
| //           with an 'acceleration' and 'deceleration' curve.
 | |
| //
 | |
| //           These are even faster than 'sin8', and have
 | |
| //           slightly different curve shapes.
 | |
| //
 | |
| 
 | |
| /// quadwave8: quadratic waveform generator.  Spends just a little more
 | |
| ///            time at the limits than 'sine' does.
 | |
| LIB8STATIC uint8_t quadwave8(uint8_t in)
 | |
| {
 | |
|     return ease8InOutQuad( triwave8( in));
 | |
| }
 | |
| 
 | |
| /// cubicwave8: cubic waveform generator.  Spends visibly more time
 | |
| ///             at the limits than 'sine' does.
 | |
| LIB8STATIC uint8_t cubicwave8(uint8_t in)
 | |
| {
 | |
|     return ease8InOutCubic( triwave8( in));
 | |
| }
 | |
| 
 | |
| /// squarewave8: square wave generator.  Useful for
 | |
| ///           turning a one-byte ever-increasing value
 | |
| ///           into a one-byte value that is either 0 or 255.
 | |
| ///           The width of the output 'pulse' is
 | |
| ///           determined by the pulsewidth argument:
 | |
| ///
 | |
| ///~~~
 | |
| ///           If pulsewidth is 255, output is always 255.
 | |
| ///           If pulsewidth < 255, then
 | |
| ///             if input < pulsewidth  then output is 255
 | |
| ///             if input >= pulsewidth then output is 0
 | |
| ///~~~
 | |
| ///
 | |
| /// the output looking like:
 | |
| ///
 | |
| ///~~~
 | |
| ///     255   +--pulsewidth--+
 | |
| ///      .    |              |
 | |
| ///      0    0              +--------(256-pulsewidth)--------
 | |
| ///~~~
 | |
| ///
 | |
| /// @param in
 | |
| /// @param pulsewidth
 | |
| /// @returns square wave output
 | |
| LIB8STATIC uint8_t squarewave8( uint8_t in, uint8_t pulsewidth)
 | |
| {
 | |
|     if( in < pulsewidth || (pulsewidth == 255)) {
 | |
|         return 255;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Beat generators - These functions produce waves at a given
 | |
| //                   number of 'beats per minute'.  Internally, they use
 | |
| //                   the Arduino function 'millis' to track elapsed time.
 | |
| //                   Accuracy is a bit better than one part in a thousand.
 | |
| //
 | |
| //       beat8( BPM ) returns an 8-bit value that cycles 'BPM' times
 | |
| //                    per minute, rising from 0 to 255, resetting to zero,
 | |
| //                    rising up again, etc..  The output of this function
 | |
| //                    is suitable for feeding directly into sin8, and cos8,
 | |
| //                    triwave8, quadwave8, and cubicwave8.
 | |
| //       beat16( BPM ) returns a 16-bit value that cycles 'BPM' times
 | |
| //                    per minute, rising from 0 to 65535, resetting to zero,
 | |
| //                    rising up again, etc.  The output of this function is
 | |
| //                    suitable for feeding directly into sin16 and cos16.
 | |
| //       beat88( BPM88) is the same as beat16, except that the BPM88 argument
 | |
| //                    MUST be in Q8.8 fixed point format, e.g. 120BPM must
 | |
| //                    be specified as 120*256 = 30720.
 | |
| //       beatsin8( BPM, uint8_t low, uint8_t high) returns an 8-bit value that
 | |
| //                    rises and falls in a sine wave, 'BPM' times per minute,
 | |
| //                    between the values of 'low' and 'high'.
 | |
| //       beatsin16( BPM, uint16_t low, uint16_t high) returns a 16-bit value
 | |
| //                    that rises and falls in a sine wave, 'BPM' times per
 | |
| //                    minute, between the values of 'low' and 'high'.
 | |
| //       beatsin88( BPM88, ...) is the same as beatsin16, except that the
 | |
| //                    BPM88 argument MUST be in Q8.8 fixed point format,
 | |
| //                    e.g. 120BPM must be specified as 120*256 = 30720.
 | |
| //
 | |
| //  BPM can be supplied two ways.  The simpler way of specifying BPM is as
 | |
| //  a simple 8-bit integer from 1-255, (e.g., "120").
 | |
| //  The more sophisticated way of specifying BPM allows for fractional
 | |
| //  "Q8.8" fixed point number (an 'accum88') with an 8-bit integer part and
 | |
| //  an 8-bit fractional part.  The easiest way to construct this is to multiply
 | |
| //  a floating point BPM value (e.g. 120.3) by 256, (e.g. resulting in 30796
 | |
| //  in this case), and pass that as the 16-bit BPM argument.
 | |
| //  "BPM88" MUST always be specified in Q8.8 format.
 | |
| //
 | |
| //  Originally designed to make an entire animation project pulse with brightness.
 | |
| //  For that effect, add this line just above your existing call to "FastLED.show()":
 | |
| //
 | |
| //     uint8_t bright = beatsin8( 60 /*BPM*/, 192 /*dimmest*/, 255 /*brightest*/ ));
 | |
| //     FastLED.setBrightness( bright );
 | |
| //     FastLED.show();
 | |
| //
 | |
| //  The entire animation will now pulse between brightness 192 and 255 once per second.
 | |
| 
 | |
| 
 | |
| // The beat generators need access to a millisecond counter.
 | |
| // On Arduino, this is "millis()".  On other platforms, you'll
 | |
| // need to provide a function with this signature:
 | |
| //   uint32_t get_millisecond_timer();
 | |
| // that provides similar functionality.
 | |
| // You can also force use of the get_millisecond_timer function
 | |
| // by #defining USE_GET_MILLISECOND_TIMER.
 | |
| #if (defined(ARDUINO) || defined(SPARK) || defined(FASTLED_HAS_MILLIS)) && !defined(USE_GET_MILLISECOND_TIMER)
 | |
| // Forward declaration of Arduino function 'millis'.
 | |
| //uint32_t millis();
 | |
| #define GET_MILLIS millis
 | |
| #else
 | |
| uint32_t get_millisecond_timer(void);
 | |
| #define GET_MILLIS get_millisecond_timer
 | |
| #endif
 | |
| 
 | |
| // beat16 generates a 16-bit 'sawtooth' wave at a given BPM,
 | |
| ///        with BPM specified in Q8.8 fixed-point format; e.g.
 | |
| ///        for this function, 120 BPM MUST BE specified as
 | |
| ///        120*256 = 30720.
 | |
| ///        If you just want to specify "120", use beat16 or beat8.
 | |
| LIB8STATIC uint16_t beat88( accum88 beats_per_minute_88, uint32_t timebase)
 | |
| {
 | |
|     // BPM is 'beats per minute', or 'beats per 60000ms'.
 | |
|     // To avoid using the (slower) division operator, we
 | |
|     // want to convert 'beats per 60000ms' to 'beats per 65536ms',
 | |
|     // and then use a simple, fast bit-shift to divide by 65536.
 | |
|     //
 | |
|     // The ratio 65536:60000 is 279.620266667:256; we'll call it 280:256.
 | |
|     // The conversion is accurate to about 0.05%, more or less,
 | |
|     // e.g. if you ask for "120 BPM", you'll get about "119.93".
 | |
|     return (((GET_MILLIS()) - timebase) * beats_per_minute_88 * 280) >> 16;
 | |
| }
 | |
| 
 | |
| /// beat16 generates a 16-bit 'sawtooth' wave at a given BPM
 | |
| LIB8STATIC uint16_t beat16( accum88 beats_per_minute, uint32_t timebase)
 | |
| {
 | |
|     // Convert simple 8-bit BPM's to full Q8.8 accum88's if needed
 | |
|     if( beats_per_minute < 256) beats_per_minute <<= 8;
 | |
|     return beat88(beats_per_minute, timebase);
 | |
| }
 | |
| 
 | |
| /// beat8 generates an 8-bit 'sawtooth' wave at a given BPM
 | |
| LIB8STATIC uint8_t beat8( accum88 beats_per_minute, uint32_t timebase)
 | |
| {
 | |
|     return beat16( beats_per_minute, timebase) >> 8;
 | |
| }
 | |
| 
 | |
| /// beatsin88 generates a 16-bit sine wave at a given BPM,
 | |
| ///           that oscillates within a given range.
 | |
| ///           For this function, BPM MUST BE SPECIFIED as
 | |
| ///           a Q8.8 fixed-point value; e.g. 120BPM must be
 | |
| ///           specified as 120*256 = 30720.
 | |
| ///           If you just want to specify "120", use beatsin16 or beatsin8.
 | |
| LIB8STATIC uint16_t beatsin88( accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
 | |
| {
 | |
|     uint16_t beat = beat88( beats_per_minute_88, timebase);
 | |
|     uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
 | |
|     uint16_t rangewidth = highest - lowest;
 | |
|     uint16_t scaledbeat = scale16( beatsin, rangewidth);
 | |
|     uint16_t result = lowest + scaledbeat;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// beatsin16 generates a 16-bit sine wave at a given BPM,
 | |
| ///           that oscillates within a given range.
 | |
| LIB8STATIC uint16_t beatsin16(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
 | |
| {
 | |
|     uint16_t beat = beat16( beats_per_minute, timebase);
 | |
|     uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
 | |
|     uint16_t rangewidth = highest - lowest;
 | |
|     uint16_t scaledbeat = scale16( beatsin, rangewidth);
 | |
|     uint16_t result = lowest + scaledbeat;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /// beatsin8 generates an 8-bit sine wave at a given BPM,
 | |
| ///           that oscillates within a given range.
 | |
| LIB8STATIC uint8_t beatsin8( accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
 | |
| {
 | |
|     uint8_t beat = beat8( beats_per_minute, timebase);
 | |
|     uint8_t beatsin = sin8( beat + phase_offset);
 | |
|     uint8_t rangewidth = highest - lowest;
 | |
|     uint8_t scaledbeat = scale8( beatsin, rangewidth);
 | |
|     uint8_t result = lowest + scaledbeat;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Return the current seconds since boot in a 16-bit value.  Used as part of the
 | |
| /// "every N time-periods" mechanism
 | |
| LIB8STATIC uint16_t seconds16(void)
 | |
| {
 | |
|     uint32_t ms = GET_MILLIS();
 | |
|     uint16_t s16;
 | |
|     s16 = ms / 1000;
 | |
|     return s16;
 | |
| }
 | |
| 
 | |
| /// Return the current minutes since boot in a 16-bit value.  Used as part of the
 | |
| /// "every N time-periods" mechanism
 | |
| LIB8STATIC uint16_t minutes16(void)
 | |
| {
 | |
|     uint32_t ms = GET_MILLIS();
 | |
|     uint16_t m16;
 | |
|     m16 = (ms / (60000L)) & 0xFFFF;
 | |
|     return m16;
 | |
| }
 | |
| 
 | |
| /// Return the current hours since boot in an 8-bit value.  Used as part of the
 | |
| /// "every N time-periods" mechanism
 | |
| LIB8STATIC uint8_t hours8(void)
 | |
| {
 | |
|     uint32_t ms = GET_MILLIS();
 | |
|     uint8_t h8;
 | |
|     h8 = (ms / (3600000L)) & 0xFF;
 | |
|     return h8;
 | |
| }
 | |
| 
 | |
| ///@}
 | |
| 
 | |
| #endif
 | 
