779 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			779 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
 | |
| 
 | |
| This program is free software: you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation, either version 2 of the License, or
 | |
| (at your option) any later version.
 | |
| 
 | |
| This program is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| #include "i2c_master.h"
 | |
| #include "oled_driver.h"
 | |
| #include OLED_FONT_H
 | |
| #include "timer.h"
 | |
| #include "print.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #include "progmem.h"
 | |
| 
 | |
| #include "keyboard.h"
 | |
| 
 | |
| // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
 | |
| // for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
 | |
| 
 | |
| // Fundamental Commands
 | |
| #define CONTRAST 0x81
 | |
| #define DISPLAY_ALL_ON 0xA5
 | |
| #define DISPLAY_ALL_ON_RESUME 0xA4
 | |
| #define NORMAL_DISPLAY 0xA6
 | |
| #define INVERT_DISPLAY 0xA7
 | |
| #define DISPLAY_ON 0xAF
 | |
| #define DISPLAY_OFF 0xAE
 | |
| #define NOP 0xE3
 | |
| 
 | |
| // Scrolling Commands
 | |
| #define ACTIVATE_SCROLL 0x2F
 | |
| #define DEACTIVATE_SCROLL 0x2E
 | |
| #define SCROLL_RIGHT 0x26
 | |
| #define SCROLL_LEFT 0x27
 | |
| #define SCROLL_RIGHT_UP 0x29
 | |
| #define SCROLL_LEFT_UP 0x2A
 | |
| 
 | |
| // Addressing Setting Commands
 | |
| #define MEMORY_MODE 0x20
 | |
| #define COLUMN_ADDR 0x21
 | |
| #define PAGE_ADDR 0x22
 | |
| #define PAM_SETCOLUMN_LSB 0x00
 | |
| #define PAM_SETCOLUMN_MSB 0x10
 | |
| #define PAM_PAGE_ADDR 0xB0  // 0xb0 -- 0xb7
 | |
| 
 | |
| // Hardware Configuration Commands
 | |
| #define DISPLAY_START_LINE 0x40
 | |
| #define SEGMENT_REMAP 0xA0
 | |
| #define SEGMENT_REMAP_INV 0xA1
 | |
| #define MULTIPLEX_RATIO 0xA8
 | |
| #define COM_SCAN_INC 0xC0
 | |
| #define COM_SCAN_DEC 0xC8
 | |
| #define DISPLAY_OFFSET 0xD3
 | |
| #define COM_PINS 0xDA
 | |
| #define COM_PINS_SEQ 0x02
 | |
| #define COM_PINS_ALT 0x12
 | |
| #define COM_PINS_SEQ_LR 0x22
 | |
| #define COM_PINS_ALT_LR 0x32
 | |
| 
 | |
| // Timing & Driving Commands
 | |
| #define DISPLAY_CLOCK 0xD5
 | |
| #define PRE_CHARGE_PERIOD 0xD9
 | |
| #define VCOM_DETECT 0xDB
 | |
| 
 | |
| // Advance Graphic Commands
 | |
| #define FADE_BLINK 0x23
 | |
| #define ENABLE_FADE 0x20
 | |
| #define ENABLE_BLINK 0x30
 | |
| 
 | |
| // Charge Pump Commands
 | |
| #define CHARGE_PUMP 0x8D
 | |
| 
 | |
| // Misc defines
 | |
| #ifndef OLED_BLOCK_COUNT
 | |
| #    define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
 | |
| #endif
 | |
| #ifndef OLED_BLOCK_SIZE
 | |
| #    define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
 | |
| #endif
 | |
| 
 | |
| #define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1)
 | |
| 
 | |
| // i2c defines
 | |
| #define I2C_CMD 0x00
 | |
| #define I2C_DATA 0x40
 | |
| #if defined(__AVR__)
 | |
| #    define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
 | |
| #else  // defined(__AVR__)
 | |
| #    define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
 | |
| #endif  // defined(__AVR__)
 | |
| #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
 | |
| #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, OLED_I2C_TIMEOUT)
 | |
| 
 | |
| #define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
 | |
| 
 | |
| // Display buffer's is the same as the OLED memory layout
 | |
| // this is so we don't end up with rounding errors with
 | |
| // parts of the display unusable or don't get cleared correctly
 | |
| // and also allows for drawing & inverting
 | |
| uint8_t         oled_buffer[OLED_MATRIX_SIZE];
 | |
| uint8_t *       oled_cursor;
 | |
| OLED_BLOCK_TYPE oled_dirty          = 0;
 | |
| bool            oled_initialized    = false;
 | |
| bool            oled_active         = false;
 | |
| bool            oled_scrolling      = false;
 | |
| bool            oled_inverted       = false;
 | |
| uint8_t         oled_brightness     = OLED_BRIGHTNESS;
 | |
| oled_rotation_t oled_rotation       = 0;
 | |
| uint8_t         oled_rotation_width = 0;
 | |
| uint8_t         oled_scroll_speed   = 0;  // this holds the speed after being remapped to ssd1306 internal values
 | |
| uint8_t         oled_scroll_start   = 0;
 | |
| uint8_t         oled_scroll_end     = 7;
 | |
| #if OLED_TIMEOUT > 0
 | |
| uint32_t oled_timeout;
 | |
| #endif
 | |
| #if OLED_SCROLL_TIMEOUT > 0
 | |
| uint32_t oled_scroll_timeout;
 | |
| #endif
 | |
| #if OLED_UPDATE_INTERVAL > 0
 | |
| uint16_t oled_update_timeout;
 | |
| #endif
 | |
| 
 | |
| // Internal variables to reduce math instructions
 | |
| 
 | |
| #if defined(__AVR__)
 | |
| // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
 | |
| // probably should move this into i2c_master...
 | |
| static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
 | |
|     i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
 | |
| 
 | |
|     for (uint16_t i = 0; i < length && status >= 0; i++) {
 | |
|         status = i2c_write(pgm_read_byte((const char *)data++), timeout);
 | |
|         if (status) break;
 | |
|     }
 | |
| 
 | |
|     i2c_stop();
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Flips the rendering bits for a character at the current cursor position
 | |
| static void InvertCharacter(uint8_t *cursor) {
 | |
|     const uint8_t *end = cursor + OLED_FONT_WIDTH;
 | |
|     while (cursor < end) {
 | |
|         *cursor = ~(*cursor);
 | |
|         cursor++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool oled_init(oled_rotation_t rotation) {
 | |
| #if defined(USE_I2C) && defined(SPLIT_KEYBOARD)
 | |
|     if (!is_keyboard_master()) {
 | |
|         return true;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     oled_rotation = oled_init_user(rotation);
 | |
|     if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|         oled_rotation_width = OLED_DISPLAY_WIDTH;
 | |
|     } else {
 | |
|         oled_rotation_width = OLED_DISPLAY_HEIGHT;
 | |
|     }
 | |
|     i2c_init();
 | |
| 
 | |
|     static const uint8_t PROGMEM display_setup1[] = {
 | |
|         I2C_CMD,
 | |
|         DISPLAY_OFF,
 | |
|         DISPLAY_CLOCK,
 | |
|         0x80,
 | |
|         MULTIPLEX_RATIO,
 | |
|         OLED_DISPLAY_HEIGHT - 1,
 | |
|         DISPLAY_OFFSET,
 | |
|         0x00,
 | |
|         DISPLAY_START_LINE | 0x00,
 | |
|         CHARGE_PUMP,
 | |
|         0x14,
 | |
| #if (OLED_IC != OLED_IC_SH1106)
 | |
|         // MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
 | |
|         MEMORY_MODE,
 | |
|         0x00,  // Horizontal addressing mode
 | |
| #endif
 | |
|     };
 | |
|     if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
 | |
|         print("oled_init cmd set 1 failed\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
 | |
|         static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC};
 | |
|         if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_init cmd normal rotation failed\n");
 | |
|             return false;
 | |
|         }
 | |
|     } else {
 | |
|         static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC};
 | |
|         if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
 | |
|             print("display_flipped failed\n");
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x20, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
 | |
|     if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
 | |
|         print("display_setup2 failed\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| #if OLED_TIMEOUT > 0
 | |
|     oled_timeout = timer_read32() + OLED_TIMEOUT;
 | |
| #endif
 | |
| #if OLED_SCROLL_TIMEOUT > 0
 | |
|     oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
 | |
| #endif
 | |
| 
 | |
|     oled_clear();
 | |
|     oled_initialized = true;
 | |
|     oled_active      = true;
 | |
|     oled_scrolling   = false;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| __attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; }
 | |
| 
 | |
| void oled_clear(void) {
 | |
|     memset(oled_buffer, 0, sizeof(oled_buffer));
 | |
|     oled_cursor = &oled_buffer[0];
 | |
|     oled_dirty  = OLED_ALL_BLOCKS_MASK;
 | |
| }
 | |
| 
 | |
| static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
 | |
|     // Calculate commands to set memory addressing bounds.
 | |
|     uint8_t start_page   = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
 | |
|     uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
 | |
| #if (OLED_IC == OLED_IC_SH1106)
 | |
|     // Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
 | |
|     // Column value must be split into high and low nybble and sent as two commands.
 | |
|     cmd_array[0] = PAM_PAGE_ADDR | start_page;
 | |
|     cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
 | |
|     cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
 | |
|     cmd_array[3] = NOP;
 | |
|     cmd_array[4] = NOP;
 | |
|     cmd_array[5] = NOP;
 | |
| #else
 | |
|     // Commands for use in Horizontal Addressing mode.
 | |
|     cmd_array[1] = start_column;
 | |
|     cmd_array[4] = start_page;
 | |
|     cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
 | |
|     cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
 | |
|     cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
 | |
|     cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
 | |
|     cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
 | |
|     ;
 | |
|     cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
 | |
| }
 | |
| 
 | |
| uint8_t crot(uint8_t a, int8_t n) {
 | |
|     const uint8_t mask = 0x7;
 | |
|     n &= mask;
 | |
|     return a << n | a >> (-n & mask);
 | |
| }
 | |
| 
 | |
| static void rotate_90(const uint8_t *src, uint8_t *dest) {
 | |
|     for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
 | |
|         uint8_t selector = (1 << i);
 | |
|         for (uint8_t j = 0; j < 8; ++j) {
 | |
|             dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void oled_render(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Do we have work to do?
 | |
|     oled_dirty &= OLED_ALL_BLOCKS_MASK;
 | |
|     if (!oled_dirty || oled_scrolling) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Find first dirty block
 | |
|     uint8_t update_start = 0;
 | |
|     while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) {
 | |
|         ++update_start;
 | |
|     }
 | |
| 
 | |
|     // Set column & page position
 | |
|     static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
 | |
|     if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|         calc_bounds(update_start, &display_start[1]);  // Offset from I2C_CMD byte at the start
 | |
|     } else {
 | |
|         calc_bounds_90(update_start, &display_start[1]);  // Offset from I2C_CMD byte at the start
 | |
|     }
 | |
| 
 | |
|     // Send column & page position
 | |
|     if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
 | |
|         print("oled_render offset command failed\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|         // Send render data chunk as is
 | |
|         if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_render data failed\n");
 | |
|             return;
 | |
|         }
 | |
|     } else {
 | |
|         // Rotate the render chunks
 | |
|         const static uint8_t source_map[] = OLED_SOURCE_MAP;
 | |
|         const static uint8_t target_map[] = OLED_TARGET_MAP;
 | |
| 
 | |
|         static uint8_t temp_buffer[OLED_BLOCK_SIZE];
 | |
|         memset(temp_buffer, 0, sizeof(temp_buffer));
 | |
|         for (uint8_t i = 0; i < sizeof(source_map); ++i) {
 | |
|             rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
 | |
|         }
 | |
| 
 | |
|         // Send render data chunk after rotating
 | |
|         if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_render90 data failed\n");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Turn on display if it is off
 | |
|     oled_on();
 | |
| 
 | |
|     // Clear dirty flag
 | |
|     oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start);
 | |
| }
 | |
| 
 | |
| void oled_set_cursor(uint8_t col, uint8_t line) {
 | |
|     uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
 | |
| 
 | |
|     // Out of bounds?
 | |
|     if (index >= OLED_MATRIX_SIZE) {
 | |
|         index = 0;
 | |
|     }
 | |
| 
 | |
|     oled_cursor = &oled_buffer[index];
 | |
| }
 | |
| 
 | |
| void oled_advance_page(bool clearPageRemainder) {
 | |
|     uint16_t index     = oled_cursor - &oled_buffer[0];
 | |
|     uint8_t  remaining = oled_rotation_width - (index % oled_rotation_width);
 | |
| 
 | |
|     if (clearPageRemainder) {
 | |
|         // Remaining Char count
 | |
|         remaining = remaining / OLED_FONT_WIDTH;
 | |
| 
 | |
|         // Write empty character until next line
 | |
|         while (remaining--) oled_write_char(' ', false);
 | |
|     } else {
 | |
|         // Next page index out of bounds?
 | |
|         if (index + remaining >= OLED_MATRIX_SIZE) {
 | |
|             index     = 0;
 | |
|             remaining = 0;
 | |
|         }
 | |
| 
 | |
|         oled_cursor = &oled_buffer[index + remaining];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void oled_advance_char(void) {
 | |
|     uint16_t nextIndex      = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
 | |
|     uint8_t  remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
 | |
| 
 | |
|     // Do we have enough space on the current line for the next character
 | |
|     if (remainingSpace < OLED_FONT_WIDTH) {
 | |
|         nextIndex += remainingSpace;
 | |
|     }
 | |
| 
 | |
|     // Did we go out of bounds
 | |
|     if (nextIndex >= OLED_MATRIX_SIZE) {
 | |
|         nextIndex = 0;
 | |
|     }
 | |
| 
 | |
|     // Update cursor position
 | |
|     oled_cursor = &oled_buffer[nextIndex];
 | |
| }
 | |
| 
 | |
| // Main handler that writes character data to the display buffer
 | |
| void oled_write_char(const char data, bool invert) {
 | |
|     // Advance to the next line if newline
 | |
|     if (data == '\n') {
 | |
|         // Old source wrote ' ' until end of line...
 | |
|         oled_advance_page(true);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (data == '\r') {
 | |
|         oled_advance_page(false);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // copy the current render buffer to check for dirty after
 | |
|     static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
 | |
|     memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
 | |
| 
 | |
|     _Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array");
 | |
| 
 | |
|     // set the reder buffer data
 | |
|     uint8_t cast_data = (uint8_t)data;  // font based on unsigned type for index
 | |
|     if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
 | |
|         memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
 | |
|     } else {
 | |
|         const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
 | |
|         memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
 | |
|     }
 | |
| 
 | |
|     // Invert if needed
 | |
|     if (invert) {
 | |
|         InvertCharacter(oled_cursor);
 | |
|     }
 | |
| 
 | |
|     // Dirty check
 | |
|     if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
 | |
|         uint16_t index = oled_cursor - &oled_buffer[0];
 | |
|         oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
 | |
|         // Edgecase check if the written data spans the 2 chunks
 | |
|         oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE));
 | |
|     }
 | |
| 
 | |
|     // Finally move to the next char
 | |
|     oled_advance_char();
 | |
| }
 | |
| 
 | |
| void oled_write(const char *data, bool invert) {
 | |
|     const char *end = data + strlen(data);
 | |
|     while (data < end) {
 | |
|         oled_write_char(*data, invert);
 | |
|         data++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void oled_write_ln(const char *data, bool invert) {
 | |
|     oled_write(data, invert);
 | |
|     oled_advance_page(true);
 | |
| }
 | |
| 
 | |
| void oled_pan(bool left) {
 | |
|     uint16_t i = 0;
 | |
|     for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) {
 | |
|         if (left) {
 | |
|             for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) {
 | |
|                 i              = y * OLED_DISPLAY_WIDTH + x;
 | |
|                 oled_buffer[i] = oled_buffer[i + 1];
 | |
|             }
 | |
|         } else {
 | |
|             for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) {
 | |
|                 i              = y * OLED_DISPLAY_WIDTH + x;
 | |
|                 oled_buffer[i] = oled_buffer[i - 1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     oled_dirty = OLED_ALL_BLOCKS_MASK;
 | |
| }
 | |
| 
 | |
| oled_buffer_reader_t oled_read_raw(uint16_t start_index) {
 | |
|     if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE;
 | |
|     oled_buffer_reader_t ret_reader;
 | |
|     ret_reader.current_element         = &oled_buffer[start_index];
 | |
|     ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index;
 | |
|     return ret_reader;
 | |
| }
 | |
| 
 | |
| void oled_write_raw_byte(const char data, uint16_t index) {
 | |
|     if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE;
 | |
|     if (oled_buffer[index] == data) return;
 | |
|     oled_buffer[index] = data;
 | |
|     oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
 | |
| }
 | |
| 
 | |
| void oled_write_raw(const char *data, uint16_t size) {
 | |
|     uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
 | |
|     if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
 | |
|     for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
 | |
|         uint8_t c = *data++;
 | |
|         if (oled_buffer[i] == c) continue;
 | |
|         oled_buffer[i] = c;
 | |
|         oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void oled_write_pixel(uint8_t x, uint8_t y, bool on) {
 | |
|     if (x >= oled_rotation_width) {
 | |
|         return;
 | |
|     }
 | |
|     uint16_t index = x + (y / 8) * oled_rotation_width;
 | |
|     if (index >= OLED_MATRIX_SIZE) {
 | |
|         return;
 | |
|     }
 | |
|     uint8_t data = oled_buffer[index];
 | |
|     if (on) {
 | |
|         data |= (1 << (y % 8));
 | |
|     } else {
 | |
|         data &= ~(1 << (y % 8));
 | |
|     }
 | |
|     if (oled_buffer[index] != data) {
 | |
|         oled_buffer[index] = data;
 | |
|         oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(__AVR__)
 | |
| void oled_write_P(const char *data, bool invert) {
 | |
|     uint8_t c = pgm_read_byte(data);
 | |
|     while (c != 0) {
 | |
|         oled_write_char(c, invert);
 | |
|         c = pgm_read_byte(++data);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void oled_write_ln_P(const char *data, bool invert) {
 | |
|     oled_write_P(data, invert);
 | |
|     oled_advance_page(true);
 | |
| }
 | |
| 
 | |
| void oled_write_raw_P(const char *data, uint16_t size) {
 | |
|     uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
 | |
|     if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
 | |
|     for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
 | |
|         uint8_t c = pgm_read_byte(data++);
 | |
|         if (oled_buffer[i] == c) continue;
 | |
|         oled_buffer[i] = c;
 | |
|         oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
 | |
|     }
 | |
| }
 | |
| #endif  // defined(__AVR__)
 | |
| 
 | |
| bool oled_on(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return oled_active;
 | |
|     }
 | |
| 
 | |
| #if OLED_TIMEOUT > 0
 | |
|     oled_timeout = timer_read32() + OLED_TIMEOUT;
 | |
| #endif
 | |
| 
 | |
|     static const uint8_t PROGMEM display_on[] =
 | |
| #ifdef OLED_FADE_OUT
 | |
|         {I2C_CMD, FADE_BLINK, 0x00};
 | |
| #else
 | |
|         {I2C_CMD, DISPLAY_ON};
 | |
| #endif
 | |
| 
 | |
|     if (!oled_active) {
 | |
|         if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_on cmd failed\n");
 | |
|             return oled_active;
 | |
|         }
 | |
|         oled_active = true;
 | |
|     }
 | |
|     return oled_active;
 | |
| }
 | |
| 
 | |
| bool oled_off(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return !oled_active;
 | |
|     }
 | |
| 
 | |
|     static const uint8_t PROGMEM display_off[] =
 | |
| #ifdef OLED_FADE_OUT
 | |
|         {I2C_CMD, FADE_BLINK, ENABLE_FADE | OLED_FADE_OUT_INTERVAL};
 | |
| #else
 | |
|         {I2C_CMD, DISPLAY_OFF};
 | |
| #endif
 | |
| 
 | |
|     if (oled_active) {
 | |
|         if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_off cmd failed\n");
 | |
|             return oled_active;
 | |
|         }
 | |
|         oled_active = false;
 | |
|     }
 | |
|     return !oled_active;
 | |
| }
 | |
| 
 | |
| bool is_oled_on(void) { return oled_active; }
 | |
| 
 | |
| uint8_t oled_set_brightness(uint8_t level) {
 | |
|     if (!oled_initialized) {
 | |
|         return oled_brightness;
 | |
|     }
 | |
| 
 | |
|     uint8_t set_contrast[] = {I2C_CMD, CONTRAST, level};
 | |
|     if (oled_brightness != level) {
 | |
|         if (I2C_TRANSMIT(set_contrast) != I2C_STATUS_SUCCESS) {
 | |
|             print("set_brightness cmd failed\n");
 | |
|             return oled_brightness;
 | |
|         }
 | |
|         oled_brightness = level;
 | |
|     }
 | |
|     return oled_brightness;
 | |
| }
 | |
| 
 | |
| uint8_t oled_get_brightness(void) { return oled_brightness; }
 | |
| 
 | |
| // Set the specific 8 lines rows of the screen to scroll.
 | |
| // 0 is the default for start, and 7 for end, which is the entire
 | |
| // height of the screen.  For 128x32 screens, rows 4-7 are not used.
 | |
| void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) {
 | |
|     oled_scroll_start = start_line;
 | |
|     oled_scroll_end   = end_line;
 | |
| }
 | |
| 
 | |
| void oled_scroll_set_speed(uint8_t speed) {
 | |
|     // Sets the speed for scrolling... does not take effect
 | |
|     // until scrolling is either started or restarted
 | |
|     // the ssd1306 supports 8 speeds
 | |
|     // FrameRate2   speed = 7
 | |
|     // FrameRate3   speed = 4
 | |
|     // FrameRate4   speed = 5
 | |
|     // FrameRate5   speed = 0
 | |
|     // FrameRate25  speed = 6
 | |
|     // FrameRate64  speed = 1
 | |
|     // FrameRate128 speed = 2
 | |
|     // FrameRate256 speed = 3
 | |
|     // for ease of use these are remaped here to be in order
 | |
|     static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3};
 | |
|     oled_scroll_speed                    = scroll_remap[speed];
 | |
| }
 | |
| 
 | |
| bool oled_scroll_right(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return oled_scrolling;
 | |
|     }
 | |
| 
 | |
|     // Dont enable scrolling if we need to update the display
 | |
|     // This prevents scrolling of bad data from starting the scroll too early after init
 | |
|     if (!oled_dirty && !oled_scrolling) {
 | |
|         uint8_t display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
 | |
|         if (I2C_TRANSMIT(display_scroll_right) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_scroll_right cmd failed\n");
 | |
|             return oled_scrolling;
 | |
|         }
 | |
|         oled_scrolling = true;
 | |
|     }
 | |
|     return oled_scrolling;
 | |
| }
 | |
| 
 | |
| bool oled_scroll_left(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return oled_scrolling;
 | |
|     }
 | |
| 
 | |
|     // Dont enable scrolling if we need to update the display
 | |
|     // This prevents scrolling of bad data from starting the scroll too early after init
 | |
|     if (!oled_dirty && !oled_scrolling) {
 | |
|         uint8_t display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
 | |
|         if (I2C_TRANSMIT(display_scroll_left) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_scroll_left cmd failed\n");
 | |
|             return oled_scrolling;
 | |
|         }
 | |
|         oled_scrolling = true;
 | |
|     }
 | |
|     return oled_scrolling;
 | |
| }
 | |
| 
 | |
| bool oled_scroll_off(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return !oled_scrolling;
 | |
|     }
 | |
| 
 | |
|     if (oled_scrolling) {
 | |
|         static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
 | |
|         if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_scroll_off cmd failed\n");
 | |
|             return oled_scrolling;
 | |
|         }
 | |
|         oled_scrolling = false;
 | |
|         oled_dirty     = OLED_ALL_BLOCKS_MASK;
 | |
|     }
 | |
|     return !oled_scrolling;
 | |
| }
 | |
| 
 | |
| bool is_oled_scrolling(void) { return oled_scrolling; }
 | |
| 
 | |
| bool oled_invert(bool invert) {
 | |
|     if (!oled_initialized) {
 | |
|         return oled_inverted;
 | |
|     }
 | |
| 
 | |
|     if (invert && !oled_inverted) {
 | |
|         static const uint8_t PROGMEM display_inverted[] = {I2C_CMD, INVERT_DISPLAY};
 | |
|         if (I2C_TRANSMIT_P(display_inverted) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_invert cmd failed\n");
 | |
|             return oled_inverted;
 | |
|         }
 | |
|         oled_inverted = true;
 | |
|     } else if (!invert && oled_inverted) {
 | |
|         static const uint8_t PROGMEM display_normal[] = {I2C_CMD, NORMAL_DISPLAY};
 | |
|         if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
 | |
|             print("oled_invert cmd failed\n");
 | |
|             return oled_inverted;
 | |
|         }
 | |
|         oled_inverted = false;
 | |
|     }
 | |
| 
 | |
|     return oled_inverted;
 | |
| }
 | |
| 
 | |
| uint8_t oled_max_chars(void) {
 | |
|     if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|         return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
 | |
|     }
 | |
|     return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
 | |
| }
 | |
| 
 | |
| uint8_t oled_max_lines(void) {
 | |
|     if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|         return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
 | |
|     }
 | |
|     return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
 | |
| }
 | |
| 
 | |
| void oled_task(void) {
 | |
|     if (!oled_initialized) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #if OLED_UPDATE_INTERVAL > 0
 | |
|     if (timer_elapsed(oled_update_timeout) >= OLED_UPDATE_INTERVAL) {
 | |
|         oled_update_timeout = timer_read();
 | |
|         oled_set_cursor(0, 0);
 | |
|         oled_task_user();
 | |
|     }
 | |
| #else
 | |
|     oled_set_cursor(0, 0);
 | |
|     oled_task_user();
 | |
| #endif
 | |
| 
 | |
| #if OLED_SCROLL_TIMEOUT > 0
 | |
|     if (oled_dirty && oled_scrolling) {
 | |
|         oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
 | |
|         oled_scroll_off();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // Smart render system, no need to check for dirty
 | |
|     oled_render();
 | |
| 
 | |
|     // Display timeout check
 | |
| #if OLED_TIMEOUT > 0
 | |
|     if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
 | |
|         oled_off();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if OLED_SCROLL_TIMEOUT > 0
 | |
|     if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
 | |
| #    ifdef OLED_SCROLL_TIMEOUT_RIGHT
 | |
|         oled_scroll_right();
 | |
| #    else
 | |
|         oled_scroll_left();
 | |
| #    endif
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| __attribute__((weak)) void oled_task_user(void) {}
 | 
