685 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			685 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "bluefruit_le.h"
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <alloca.h>
 | |
| #include "debug.h"
 | |
| #include "timer.h"
 | |
| #include "gpio.h"
 | |
| #include "ringbuffer.hpp"
 | |
| #include <string.h>
 | |
| #include "spi_master.h"
 | |
| #include "wait.h"
 | |
| #include "analog.h"
 | |
| #include "progmem.h"
 | |
| 
 | |
| // These are the pin assignments for the 32u4 boards.
 | |
| // You may define them to something else in your config.h
 | |
| // if yours is wired up differently.
 | |
| #ifndef BLUEFRUIT_LE_RST_PIN
 | |
| #    define BLUEFRUIT_LE_RST_PIN D4
 | |
| #endif
 | |
| 
 | |
| #ifndef BLUEFRUIT_LE_CS_PIN
 | |
| #    define BLUEFRUIT_LE_CS_PIN B4
 | |
| #endif
 | |
| 
 | |
| #ifndef BLUEFRUIT_LE_IRQ_PIN
 | |
| #    define BLUEFRUIT_LE_IRQ_PIN E6
 | |
| #endif
 | |
| 
 | |
| #ifndef BLUEFRUIT_LE_SCK_DIVISOR
 | |
| #    define BLUEFRUIT_LE_SCK_DIVISOR 2 // 4MHz SCK/8MHz CPU, calculated for Feather 32U4 BLE
 | |
| #endif
 | |
| 
 | |
| #define SAMPLE_BATTERY
 | |
| #define ConnectionUpdateInterval 1000 /* milliseconds */
 | |
| 
 | |
| #ifndef BATTERY_LEVEL_PIN
 | |
| #    define BATTERY_LEVEL_PIN B5
 | |
| #endif
 | |
| 
 | |
| static struct {
 | |
|     bool is_connected;
 | |
|     bool initialized;
 | |
|     bool configured;
 | |
| 
 | |
| #define ProbedEvents 1
 | |
| #define UsingEvents 2
 | |
|     bool event_flags;
 | |
| 
 | |
| #ifdef SAMPLE_BATTERY
 | |
|     uint16_t last_battery_update;
 | |
|     uint32_t vbat;
 | |
| #endif
 | |
|     uint16_t last_connection_update;
 | |
| } state;
 | |
| 
 | |
| // Commands are encoded using SDEP and sent via SPI
 | |
| // https://github.com/adafruit/Adafruit_BluefruitLE_nRF51/blob/master/SDEP.md
 | |
| 
 | |
| #define SdepMaxPayload 16
 | |
| struct sdep_msg {
 | |
|     uint8_t type;
 | |
|     uint8_t cmd_low;
 | |
|     uint8_t cmd_high;
 | |
|     struct __attribute__((packed)) {
 | |
|         uint8_t len : 7;
 | |
|         uint8_t more : 1;
 | |
|     };
 | |
|     uint8_t payload[SdepMaxPayload];
 | |
| } __attribute__((packed));
 | |
| 
 | |
| // The recv latency is relatively high, so when we're hammering keys quickly,
 | |
| // we want to avoid waiting for the responses in the matrix loop.  We maintain
 | |
| // a short queue for that.  Since there is quite a lot of space overhead for
 | |
| // the AT command representation wrapped up in SDEP, we queue the minimal
 | |
| // information here.
 | |
| 
 | |
| enum queue_type {
 | |
|     QTKeyReport, // 1-byte modifier + 6-byte key report
 | |
|     QTConsumer,  // 16-bit key code
 | |
|     QTMouseMove, // 4-byte mouse report
 | |
| };
 | |
| 
 | |
| struct queue_item {
 | |
|     enum queue_type queue_type;
 | |
|     uint16_t        added;
 | |
|     union __attribute__((packed)) {
 | |
|         struct __attribute__((packed)) {
 | |
|             uint8_t modifier;
 | |
|             uint8_t keys[6];
 | |
|         } key;
 | |
| 
 | |
|         uint16_t consumer;
 | |
|         struct __attribute__((packed)) {
 | |
|             int8_t  x, y, scroll, pan;
 | |
|             uint8_t buttons;
 | |
|         } mousemove;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // Items that we wish to send
 | |
| static RingBuffer<queue_item, 40> send_buf;
 | |
| // Pending response; while pending, we can't send any more requests.
 | |
| // This records the time at which we sent the command for which we
 | |
| // are expecting a response.
 | |
| static RingBuffer<uint16_t, 2> resp_buf;
 | |
| 
 | |
| static bool process_queue_item(struct queue_item *item, uint16_t timeout);
 | |
| 
 | |
| enum sdep_type {
 | |
|     SdepCommand       = 0x10,
 | |
|     SdepResponse      = 0x20,
 | |
|     SdepAlert         = 0x40,
 | |
|     SdepError         = 0x80,
 | |
|     SdepSlaveNotReady = 0xFE, // Try again later
 | |
|     SdepSlaveOverflow = 0xFF, // You read more data than is available
 | |
| };
 | |
| 
 | |
| enum ble_cmd {
 | |
|     BleInitialize = 0xBEEF,
 | |
|     BleAtWrapper  = 0x0A00,
 | |
|     BleUartTx     = 0x0A01,
 | |
|     BleUartRx     = 0x0A02,
 | |
| };
 | |
| 
 | |
| enum ble_system_event_bits {
 | |
|     BleSystemConnected    = 0,
 | |
|     BleSystemDisconnected = 1,
 | |
|     BleSystemUartRx       = 8,
 | |
|     BleSystemMidiRx       = 10,
 | |
| };
 | |
| 
 | |
| #define SdepTimeout 150             /* milliseconds */
 | |
| #define SdepShortTimeout 10         /* milliseconds */
 | |
| #define SdepBackOff 25              /* microseconds */
 | |
| #define BatteryUpdateInterval 10000 /* milliseconds */
 | |
| 
 | |
| static bool at_command(const char *cmd, char *resp, uint16_t resplen, bool verbose, uint16_t timeout = SdepTimeout);
 | |
| static bool at_command_P(const char *cmd, char *resp, uint16_t resplen, bool verbose = false);
 | |
| 
 | |
| // Send a single SDEP packet
 | |
| static bool sdep_send_pkt(const struct sdep_msg *msg, uint16_t timeout) {
 | |
|     spi_start(BLUEFRUIT_LE_CS_PIN, false, 0, BLUEFRUIT_LE_SCK_DIVISOR);
 | |
|     uint16_t timerStart = timer_read();
 | |
|     bool     success    = false;
 | |
|     bool     ready      = false;
 | |
| 
 | |
|     do {
 | |
|         ready = spi_write(msg->type) != SdepSlaveNotReady;
 | |
|         if (ready) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // Release it and let it initialize
 | |
|         spi_stop();
 | |
|         wait_us(SdepBackOff);
 | |
|         spi_start(BLUEFRUIT_LE_CS_PIN, false, 0, BLUEFRUIT_LE_SCK_DIVISOR);
 | |
|     } while (timer_elapsed(timerStart) < timeout);
 | |
| 
 | |
|     if (ready) {
 | |
|         // Slave is ready; send the rest of the packet
 | |
|         spi_transmit(&msg->cmd_low, sizeof(*msg) - (1 + sizeof(msg->payload)) + msg->len);
 | |
|         success = true;
 | |
|     }
 | |
| 
 | |
|     spi_stop();
 | |
| 
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| static inline void sdep_build_pkt(struct sdep_msg *msg, uint16_t command, const uint8_t *payload, uint8_t len, bool moredata) {
 | |
|     msg->type     = SdepCommand;
 | |
|     msg->cmd_low  = command & 0xFF;
 | |
|     msg->cmd_high = command >> 8;
 | |
|     msg->len      = len;
 | |
|     msg->more     = (moredata && len == SdepMaxPayload) ? 1 : 0;
 | |
| 
 | |
|     static_assert(sizeof(*msg) == 20, "msg is correctly packed");
 | |
| 
 | |
|     memcpy(msg->payload, payload, len);
 | |
| }
 | |
| 
 | |
| // Read a single SDEP packet
 | |
| static bool sdep_recv_pkt(struct sdep_msg *msg, uint16_t timeout) {
 | |
|     bool     success    = false;
 | |
|     uint16_t timerStart = timer_read();
 | |
|     bool     ready      = false;
 | |
| 
 | |
|     do {
 | |
|         ready = readPin(BLUEFRUIT_LE_IRQ_PIN);
 | |
|         if (ready) {
 | |
|             break;
 | |
|         }
 | |
|         wait_us(1);
 | |
|     } while (timer_elapsed(timerStart) < timeout);
 | |
| 
 | |
|     if (ready) {
 | |
|         spi_start(BLUEFRUIT_LE_CS_PIN, false, 0, BLUEFRUIT_LE_SCK_DIVISOR);
 | |
| 
 | |
|         do {
 | |
|             // Read the command type, waiting for the data to be ready
 | |
|             msg->type = spi_read();
 | |
|             if (msg->type == SdepSlaveNotReady || msg->type == SdepSlaveOverflow) {
 | |
|                 // Release it and let it initialize
 | |
|                 spi_stop();
 | |
|                 wait_us(SdepBackOff);
 | |
|                 spi_start(BLUEFRUIT_LE_CS_PIN, false, 0, BLUEFRUIT_LE_SCK_DIVISOR);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // Read the rest of the header
 | |
|             spi_receive(&msg->cmd_low, sizeof(*msg) - (1 + sizeof(msg->payload)));
 | |
| 
 | |
|             // and get the payload if there is any
 | |
|             if (msg->len <= SdepMaxPayload) {
 | |
|                 spi_receive(msg->payload, msg->len);
 | |
|             }
 | |
|             success = true;
 | |
|             break;
 | |
|         } while (timer_elapsed(timerStart) < timeout);
 | |
| 
 | |
|         spi_stop();
 | |
|     }
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| static void resp_buf_read_one(bool greedy) {
 | |
|     uint16_t last_send;
 | |
|     if (!resp_buf.peek(last_send)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (readPin(BLUEFRUIT_LE_IRQ_PIN)) {
 | |
|         struct sdep_msg msg;
 | |
| 
 | |
|     again:
 | |
|         if (sdep_recv_pkt(&msg, SdepTimeout)) {
 | |
|             if (!msg.more) {
 | |
|                 // We got it; consume this entry
 | |
|                 resp_buf.get(last_send);
 | |
|                 dprintf("recv latency %dms\n", TIMER_DIFF_16(timer_read(), last_send));
 | |
|             }
 | |
| 
 | |
|             if (greedy && resp_buf.peek(last_send) && readPin(BLUEFRUIT_LE_IRQ_PIN)) {
 | |
|                 goto again;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     } else if (timer_elapsed(last_send) > SdepTimeout * 2) {
 | |
|         dprintf("waiting_for_result: timeout, resp_buf size %d\n", (int)resp_buf.size());
 | |
| 
 | |
|         // Timed out: consume this entry
 | |
|         resp_buf.get(last_send);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void send_buf_send_one(uint16_t timeout = SdepTimeout) {
 | |
|     struct queue_item item;
 | |
| 
 | |
|     // Don't send anything more until we get an ACK
 | |
|     if (!resp_buf.empty()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!send_buf.peek(item)) {
 | |
|         return;
 | |
|     }
 | |
|     if (process_queue_item(&item, timeout)) {
 | |
|         // commit that peek
 | |
|         send_buf.get(item);
 | |
|         dprintf("send_buf_send_one: have %d remaining\n", (int)send_buf.size());
 | |
|     } else {
 | |
|         dprint("failed to send, will retry\n");
 | |
|         wait_ms(SdepTimeout);
 | |
|         resp_buf_read_one(true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void resp_buf_wait(const char *cmd) {
 | |
|     bool didPrint = false;
 | |
|     while (!resp_buf.empty()) {
 | |
|         if (!didPrint) {
 | |
|             dprintf("wait on buf for %s\n", cmd);
 | |
|             didPrint = true;
 | |
|         }
 | |
|         resp_buf_read_one(true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void bluefruit_le_init(void) {
 | |
|     state.initialized  = false;
 | |
|     state.configured   = false;
 | |
|     state.is_connected = false;
 | |
| 
 | |
|     setPinInput(BLUEFRUIT_LE_IRQ_PIN);
 | |
| 
 | |
|     spi_init();
 | |
| 
 | |
|     // Perform a hardware reset
 | |
|     setPinOutput(BLUEFRUIT_LE_RST_PIN);
 | |
|     writePinHigh(BLUEFRUIT_LE_RST_PIN);
 | |
|     writePinLow(BLUEFRUIT_LE_RST_PIN);
 | |
|     wait_ms(10);
 | |
|     writePinHigh(BLUEFRUIT_LE_RST_PIN);
 | |
| 
 | |
|     wait_ms(1000); // Give it a second to initialize
 | |
| 
 | |
|     state.initialized = true;
 | |
| }
 | |
| 
 | |
| static inline uint8_t min(uint8_t a, uint8_t b) {
 | |
|     return a < b ? a : b;
 | |
| }
 | |
| 
 | |
| static bool read_response(char *resp, uint16_t resplen, bool verbose) {
 | |
|     char *dest = resp;
 | |
|     char *end  = dest + resplen;
 | |
| 
 | |
|     while (true) {
 | |
|         struct sdep_msg msg;
 | |
| 
 | |
|         if (!sdep_recv_pkt(&msg, 2 * SdepTimeout)) {
 | |
|             dprint("sdep_recv_pkt failed\n");
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (msg.type != SdepResponse) {
 | |
|             *resp = 0;
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         uint8_t len = min(msg.len, end - dest);
 | |
|         if (len > 0) {
 | |
|             memcpy(dest, msg.payload, len);
 | |
|             dest += len;
 | |
|         }
 | |
| 
 | |
|         if (!msg.more) {
 | |
|             // No more data is expected!
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Ensure the response is NUL terminated
 | |
|     *dest = 0;
 | |
| 
 | |
|     // "Parse" the result text; we want to snip off the trailing OK or ERROR line
 | |
|     // Rewind past the possible trailing CRLF so that we can strip it
 | |
|     --dest;
 | |
|     while (dest > resp && (dest[0] == '\n' || dest[0] == '\r')) {
 | |
|         *dest = 0;
 | |
|         --dest;
 | |
|     }
 | |
| 
 | |
|     // Look back for start of preceeding line
 | |
|     char *last_line = strrchr(resp, '\n');
 | |
|     if (last_line) {
 | |
|         ++last_line;
 | |
|     } else {
 | |
|         last_line = resp;
 | |
|     }
 | |
| 
 | |
|     bool              success       = false;
 | |
|     static const char kOK[] PROGMEM = "OK";
 | |
| 
 | |
|     success = !strcmp_P(last_line, kOK);
 | |
| 
 | |
|     if (verbose || !success) {
 | |
|         dprintf("result: %s\n", resp);
 | |
|     }
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| static bool at_command(const char *cmd, char *resp, uint16_t resplen, bool verbose, uint16_t timeout) {
 | |
|     const char *    end = cmd + strlen(cmd);
 | |
|     struct sdep_msg msg;
 | |
| 
 | |
|     if (verbose) {
 | |
|         dprintf("ble send: %s\n", cmd);
 | |
|     }
 | |
| 
 | |
|     if (resp) {
 | |
|         // They want to decode the response, so we need to flush and wait
 | |
|         // for all pending I/O to finish before we start this one, so
 | |
|         // that we don't confuse the results
 | |
|         resp_buf_wait(cmd);
 | |
|         *resp = 0;
 | |
|     }
 | |
| 
 | |
|     // Fragment the command into a series of SDEP packets
 | |
|     while (end - cmd > SdepMaxPayload) {
 | |
|         sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, SdepMaxPayload, true);
 | |
|         if (!sdep_send_pkt(&msg, timeout)) {
 | |
|             return false;
 | |
|         }
 | |
|         cmd += SdepMaxPayload;
 | |
|     }
 | |
| 
 | |
|     sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, end - cmd, false);
 | |
|     if (!sdep_send_pkt(&msg, timeout)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (resp == NULL) {
 | |
|         uint16_t now = timer_read();
 | |
|         while (!resp_buf.enqueue(now)) {
 | |
|             resp_buf_read_one(false);
 | |
|         }
 | |
|         uint16_t later = timer_read();
 | |
|         if (TIMER_DIFF_16(later, now) > 0) {
 | |
|             dprintf("waited %dms for resp_buf\n", TIMER_DIFF_16(later, now));
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return read_response(resp, resplen, verbose);
 | |
| }
 | |
| 
 | |
| bool at_command_P(const char *cmd, char *resp, uint16_t resplen, bool verbose) {
 | |
|     char *cmdbuf = (char *)alloca(strlen_P(cmd) + 1);
 | |
|     strcpy_P(cmdbuf, cmd);
 | |
|     return at_command(cmdbuf, resp, resplen, verbose);
 | |
| }
 | |
| 
 | |
| bool bluefruit_le_is_connected(void) {
 | |
|     return state.is_connected;
 | |
| }
 | |
| 
 | |
| bool bluefruit_le_enable_keyboard(void) {
 | |
|     char resbuf[128];
 | |
| 
 | |
|     if (!state.initialized) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     state.configured = false;
 | |
| 
 | |
|     // Disable command echo
 | |
|     static const char kEcho[] PROGMEM = "ATE=0";
 | |
|     // Make the advertised name match the keyboard
 | |
|     static const char kGapDevName[] PROGMEM = "AT+GAPDEVNAME=" PRODUCT;
 | |
|     // Turn on keyboard support
 | |
|     static const char kHidEnOn[] PROGMEM = "AT+BLEHIDEN=1";
 | |
| 
 | |
|     // Adjust intervals to improve latency.  This causes the "central"
 | |
|     // system (computer/tablet) to poll us every 10-30 ms.  We can't
 | |
|     // set a smaller value than 10ms, and 30ms seems to be the natural
 | |
|     // processing time on my macbook.  Keeping it constrained to that
 | |
|     // feels reasonable to type to.
 | |
|     static const char kGapIntervals[] PROGMEM = "AT+GAPINTERVALS=10,30,,";
 | |
| 
 | |
|     // Reset the device so that it picks up the above changes
 | |
|     static const char kATZ[] PROGMEM = "ATZ";
 | |
| 
 | |
|     // Turn down the power level a bit
 | |
|     static const char  kPower[] PROGMEM             = "AT+BLEPOWERLEVEL=-12";
 | |
|     static PGM_P const configure_commands[] PROGMEM = {
 | |
|         kEcho, kGapIntervals, kGapDevName, kHidEnOn, kPower, kATZ,
 | |
|     };
 | |
| 
 | |
|     uint8_t i;
 | |
|     for (i = 0; i < sizeof(configure_commands) / sizeof(configure_commands[0]); ++i) {
 | |
|         PGM_P cmd;
 | |
|         memcpy_P(&cmd, configure_commands + i, sizeof(cmd));
 | |
| 
 | |
|         if (!at_command_P(cmd, resbuf, sizeof(resbuf))) {
 | |
|             dprintf("failed BLE command: %S: %s\n", cmd, resbuf);
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     state.configured = true;
 | |
| 
 | |
|     // Check connection status in a little while; allow the ATZ time
 | |
|     // to kick in.
 | |
|     state.last_connection_update = timer_read();
 | |
| fail:
 | |
|     return state.configured;
 | |
| }
 | |
| 
 | |
| static void set_connected(bool connected) {
 | |
|     if (connected != state.is_connected) {
 | |
|         if (connected) {
 | |
|             dprint("BLE connected\n");
 | |
|         } else {
 | |
|             dprint("BLE disconnected\n");
 | |
|         }
 | |
|         state.is_connected = connected;
 | |
| 
 | |
|         // TODO: if modifiers are down on the USB interface and
 | |
|         // we cut over to BLE or vice versa, they will remain stuck.
 | |
|         // This feels like a good point to do something like clearing
 | |
|         // the keyboard and/or generating a fake all keys up message.
 | |
|         // However, I've noticed that it takes a couple of seconds
 | |
|         // for macOS to to start recognizing key presses after BLE
 | |
|         // is in the connected state, so I worry that doing that
 | |
|         // here may not be good enough.
 | |
|     }
 | |
| }
 | |
| 
 | |
| void bluefruit_le_task(void) {
 | |
|     char resbuf[48];
 | |
| 
 | |
|     if (!state.configured && !bluefruit_le_enable_keyboard()) {
 | |
|         return;
 | |
|     }
 | |
|     resp_buf_read_one(true);
 | |
|     send_buf_send_one(SdepShortTimeout);
 | |
| 
 | |
|     if (resp_buf.empty() && (state.event_flags & UsingEvents) && readPin(BLUEFRUIT_LE_IRQ_PIN)) {
 | |
|         // Must be an event update
 | |
|         if (at_command_P(PSTR("AT+EVENTSTATUS"), resbuf, sizeof(resbuf))) {
 | |
|             uint32_t mask = strtoul(resbuf, NULL, 16);
 | |
| 
 | |
|             if (mask & BleSystemConnected) {
 | |
|                 set_connected(true);
 | |
|             } else if (mask & BleSystemDisconnected) {
 | |
|                 set_connected(false);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (timer_elapsed(state.last_connection_update) > ConnectionUpdateInterval) {
 | |
|         bool shouldPoll = true;
 | |
|         if (!(state.event_flags & ProbedEvents)) {
 | |
|             // Request notifications about connection status changes.
 | |
|             // This only works in SPIFRIEND firmware > 0.6.7, which is why
 | |
|             // we check for this conditionally here.
 | |
|             // Note that at the time of writing, HID reports only work correctly
 | |
|             // with Apple products on firmware version 0.6.7!
 | |
|             // https://forums.adafruit.com/viewtopic.php?f=8&t=104052
 | |
|             if (at_command_P(PSTR("AT+EVENTENABLE=0x1"), resbuf, sizeof(resbuf))) {
 | |
|                 at_command_P(PSTR("AT+EVENTENABLE=0x2"), resbuf, sizeof(resbuf));
 | |
|                 state.event_flags |= UsingEvents;
 | |
|             }
 | |
|             state.event_flags |= ProbedEvents;
 | |
| 
 | |
|             // leave shouldPoll == true so that we check at least once
 | |
|             // before relying solely on events
 | |
|         } else {
 | |
|             shouldPoll = false;
 | |
|         }
 | |
| 
 | |
|         static const char kGetConn[] PROGMEM = "AT+GAPGETCONN";
 | |
|         state.last_connection_update         = timer_read();
 | |
| 
 | |
|         if (at_command_P(kGetConn, resbuf, sizeof(resbuf))) {
 | |
|             set_connected(atoi(resbuf));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef SAMPLE_BATTERY
 | |
|     if (timer_elapsed(state.last_battery_update) > BatteryUpdateInterval && resp_buf.empty()) {
 | |
|         state.last_battery_update = timer_read();
 | |
| 
 | |
|         state.vbat = analogReadPin(BATTERY_LEVEL_PIN);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool process_queue_item(struct queue_item *item, uint16_t timeout) {
 | |
|     char cmdbuf[48];
 | |
|     char fmtbuf[64];
 | |
| 
 | |
|     // Arrange to re-check connection after keys have settled
 | |
|     state.last_connection_update = timer_read();
 | |
| 
 | |
| #if 1
 | |
|     if (TIMER_DIFF_16(state.last_connection_update, item->added) > 0) {
 | |
|         dprintf("send latency %dms\n", TIMER_DIFF_16(state.last_connection_update, item->added));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     switch (item->queue_type) {
 | |
|         case QTKeyReport:
 | |
|             strcpy_P(fmtbuf, PSTR("AT+BLEKEYBOARDCODE=%02x-00-%02x-%02x-%02x-%02x-%02x-%02x"));
 | |
|             snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->key.modifier, item->key.keys[0], item->key.keys[1], item->key.keys[2], item->key.keys[3], item->key.keys[4], item->key.keys[5]);
 | |
|             return at_command(cmdbuf, NULL, 0, true, timeout);
 | |
| 
 | |
| #ifdef EXTRAKEY_ENABLE
 | |
|         case QTConsumer:
 | |
|             strcpy_P(fmtbuf, PSTR("AT+BLEHIDCONTROLKEY=0x%04x"));
 | |
|             snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->consumer);
 | |
|             return at_command(cmdbuf, NULL, 0, true, timeout);
 | |
| #endif
 | |
| 
 | |
| #ifdef MOUSE_ENABLE
 | |
|         case QTMouseMove:
 | |
|             strcpy_P(fmtbuf, PSTR("AT+BLEHIDMOUSEMOVE=%d,%d,%d,%d"));
 | |
|             snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->mousemove.x, item->mousemove.y, item->mousemove.scroll, item->mousemove.pan);
 | |
|             if (!at_command(cmdbuf, NULL, 0, true, timeout)) {
 | |
|                 return false;
 | |
|             }
 | |
|             strcpy_P(cmdbuf, PSTR("AT+BLEHIDMOUSEBUTTON="));
 | |
|             if (item->mousemove.buttons & MOUSE_BTN1) {
 | |
|                 strcat(cmdbuf, "L");
 | |
|             }
 | |
|             if (item->mousemove.buttons & MOUSE_BTN2) {
 | |
|                 strcat(cmdbuf, "R");
 | |
|             }
 | |
|             if (item->mousemove.buttons & MOUSE_BTN3) {
 | |
|                 strcat(cmdbuf, "M");
 | |
|             }
 | |
|             if (item->mousemove.buttons == 0) {
 | |
|                 strcat(cmdbuf, "0");
 | |
|             }
 | |
|             return at_command(cmdbuf, NULL, 0, true, timeout);
 | |
| #endif
 | |
|         default:
 | |
|             return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void bluefruit_le_send_keyboard(report_keyboard_t *report) {
 | |
|     struct queue_item item;
 | |
| 
 | |
|     item.queue_type   = QTKeyReport;
 | |
|     item.key.modifier = report->mods;
 | |
|     item.key.keys[0]  = report->keys[0];
 | |
|     item.key.keys[1]  = report->keys[1];
 | |
|     item.key.keys[2]  = report->keys[2];
 | |
|     item.key.keys[3]  = report->keys[3];
 | |
|     item.key.keys[4]  = report->keys[4];
 | |
|     item.key.keys[5]  = report->keys[5];
 | |
| 
 | |
|     while (!send_buf.enqueue(item)) {
 | |
|         send_buf_send_one();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void bluefruit_le_send_consumer(uint16_t usage) {
 | |
|     struct queue_item item;
 | |
| 
 | |
|     item.queue_type = QTConsumer;
 | |
|     item.consumer   = usage;
 | |
| 
 | |
|     while (!send_buf.enqueue(item)) {
 | |
|         send_buf_send_one();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void bluefruit_le_send_mouse(report_mouse_t *report) {
 | |
|     struct queue_item item;
 | |
| 
 | |
|     item.queue_type        = QTMouseMove;
 | |
|     item.mousemove.x       = report->x;
 | |
|     item.mousemove.y       = report->y;
 | |
|     item.mousemove.scroll  = report->v;
 | |
|     item.mousemove.pan     = report->h;
 | |
|     item.mousemove.buttons = report->buttons;
 | |
| 
 | |
|     while (!send_buf.enqueue(item)) {
 | |
|         send_buf_send_one();
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t bluefruit_le_read_battery_voltage(void) {
 | |
|     return state.vbat;
 | |
| }
 | |
| 
 | |
| bool bluefruit_le_set_mode_leds(bool on) {
 | |
|     if (!state.configured) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // The "mode" led is the red blinky one
 | |
|     at_command_P(on ? PSTR("AT+HWMODELED=1") : PSTR("AT+HWMODELED=0"), NULL, 0);
 | |
| 
 | |
|     // Pin 19 is the blue "connected" LED; turn that off too.
 | |
|     // When turning LEDs back on, don't turn that LED on if we're
 | |
|     // not connected, as that would be confusing.
 | |
|     at_command_P(on && state.is_connected ? PSTR("AT+HWGPIO=19,1") : PSTR("AT+HWGPIO=19,0"), NULL, 0);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le/ble-generic#at-plus-blepowerlevel
 | |
| bool bluefruit_le_set_power_level(int8_t level) {
 | |
|     char cmd[46];
 | |
|     if (!state.configured) {
 | |
|         return false;
 | |
|     }
 | |
|     snprintf(cmd, sizeof(cmd), "AT+BLEPOWERLEVEL=%d", level);
 | |
|     return at_command(cmd, NULL, 0, false);
 | |
| }
 | 
