337 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			337 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2016-2019 Jack Humbert
 | |
|  * Copyright 2020 JohSchneider
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "audio.h"
 | |
| #include <ch.h>
 | |
| #include <hal.h>
 | |
| 
 | |
| /*
 | |
|   Audio Driver: DAC
 | |
| 
 | |
|   which utilizes the dac unit many STM32 are equipped with, to output a modulated waveform from samples stored in the dac_buffer_* array who are passed to the hardware through DMA
 | |
| 
 | |
|   it is also possible to have a custom sample-LUT by implementing/overriding 'dac_value_generate'
 | |
| 
 | |
|   this driver allows for multiple simultaneous tones to be played through one single channel by doing additive wave-synthesis
 | |
| */
 | |
| 
 | |
| #if !defined(AUDIO_PIN)
 | |
| #    error "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC additive)' for available options."
 | |
| #endif
 | |
| #if defined(AUDIO_PIN_ALT) && !defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | |
| #    pragma message "Audio feature: AUDIO_PIN_ALT set, but not AUDIO_PIN_ALT_AS_NEGATIVE - pin will be left unused; audio might still work though."
 | |
| #endif
 | |
| 
 | |
| #if !defined(AUDIO_PIN_ALT)
 | |
| // no ALT pin defined is valid, but the c-ifs below need some value set
 | |
| #    define AUDIO_PIN_ALT PAL_NOLINE
 | |
| #endif
 | |
| 
 | |
| #if !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID)
 | |
| #    define AUDIO_DAC_SAMPLE_WAVEFORM_SINE
 | |
| #endif
 | |
| 
 | |
| #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SINE
 | |
| /* one full sine wave over [0,2*pi], but shifted up one amplitude and left pi/4; for the samples to start at 0
 | |
|  */
 | |
| static const dacsample_t dac_buffer_sine[AUDIO_DAC_BUFFER_SIZE] = {
 | |
|     // 256 values, max 4095
 | |
|     0x0,   0x1,   0x2,   0x6,   0xa,   0xf,   0x16,  0x1e,  0x27,  0x32,  0x3d,  0x4a,  0x58,  0x67,  0x78,  0x89,  0x9c,  0xb0,  0xc5,  0xdb,  0xf2,  0x10a, 0x123, 0x13e, 0x159, 0x175, 0x193, 0x1b1, 0x1d1, 0x1f1, 0x212, 0x235, 0x258, 0x27c, 0x2a0, 0x2c6, 0x2ed, 0x314, 0x33c, 0x365, 0x38e, 0x3b8, 0x3e3, 0x40e, 0x43a, 0x467, 0x494, 0x4c2, 0x4f0, 0x51f, 0x54e, 0x57d, 0x5ad, 0x5dd, 0x60e, 0x63f, 0x670, 0x6a1, 0x6d3, 0x705, 0x737, 0x769, 0x79b, 0x7cd, 0x800, 0x832, 0x864, 0x896, 0x8c8, 0x8fa, 0x92c, 0x95e, 0x98f, 0x9c0, 0x9f1, 0xa22, 0xa52, 0xa82, 0xab1, 0xae0, 0xb0f, 0xb3d, 0xb6b, 0xb98, 0xbc5, 0xbf1, 0xc1c, 0xc47, 0xc71, 0xc9a, 0xcc3, 0xceb, 0xd12, 0xd39, 0xd5f, 0xd83, 0xda7, 0xdca, 0xded, 0xe0e, 0xe2e, 0xe4e, 0xe6c, 0xe8a, 0xea6, 0xec1, 0xedc, 0xef5, 0xf0d, 0xf24, 0xf3a, 0xf4f, 0xf63, 0xf76, 0xf87, 0xf98, 0xfa7, 0xfb5, 0xfc2, 0xfcd, 0xfd8, 0xfe1, 0xfe9, 0xff0, 0xff5, 0xff9, 0xffd, 0xffe,
 | |
|     0xfff, 0xffe, 0xffd, 0xff9, 0xff5, 0xff0, 0xfe9, 0xfe1, 0xfd8, 0xfcd, 0xfc2, 0xfb5, 0xfa7, 0xf98, 0xf87, 0xf76, 0xf63, 0xf4f, 0xf3a, 0xf24, 0xf0d, 0xef5, 0xedc, 0xec1, 0xea6, 0xe8a, 0xe6c, 0xe4e, 0xe2e, 0xe0e, 0xded, 0xdca, 0xda7, 0xd83, 0xd5f, 0xd39, 0xd12, 0xceb, 0xcc3, 0xc9a, 0xc71, 0xc47, 0xc1c, 0xbf1, 0xbc5, 0xb98, 0xb6b, 0xb3d, 0xb0f, 0xae0, 0xab1, 0xa82, 0xa52, 0xa22, 0x9f1, 0x9c0, 0x98f, 0x95e, 0x92c, 0x8fa, 0x8c8, 0x896, 0x864, 0x832, 0x800, 0x7cd, 0x79b, 0x769, 0x737, 0x705, 0x6d3, 0x6a1, 0x670, 0x63f, 0x60e, 0x5dd, 0x5ad, 0x57d, 0x54e, 0x51f, 0x4f0, 0x4c2, 0x494, 0x467, 0x43a, 0x40e, 0x3e3, 0x3b8, 0x38e, 0x365, 0x33c, 0x314, 0x2ed, 0x2c6, 0x2a0, 0x27c, 0x258, 0x235, 0x212, 0x1f1, 0x1d1, 0x1b1, 0x193, 0x175, 0x159, 0x13e, 0x123, 0x10a, 0xf2,  0xdb,  0xc5,  0xb0,  0x9c,  0x89,  0x78,  0x67,  0x58,  0x4a,  0x3d,  0x32,  0x27,  0x1e,  0x16,  0xf,   0xa,   0x6,   0x2,   0x1};
 | |
| #endif // AUDIO_DAC_SAMPLE_WAVEFORM_SINE
 | |
| #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
 | |
| static const dacsample_t dac_buffer_triangle[AUDIO_DAC_BUFFER_SIZE] = {
 | |
|     // 256 values, max 4095
 | |
|     0x0,   0x20,  0x40,  0x60,  0x80,  0xa0,  0xc0,  0xe0,  0x100, 0x120, 0x140, 0x160, 0x180, 0x1a0, 0x1c0, 0x1e0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0x400, 0x420, 0x440, 0x460, 0x480, 0x4a0, 0x4c0, 0x4e0, 0x500, 0x520, 0x540, 0x560, 0x580, 0x5a0, 0x5c0, 0x5e0, 0x600, 0x620, 0x640, 0x660, 0x680, 0x6a0, 0x6c0, 0x6e0, 0x700, 0x720, 0x740, 0x760, 0x780, 0x7a0, 0x7c0, 0x7e0, 0x800, 0x81f, 0x83f, 0x85f, 0x87f, 0x89f, 0x8bf, 0x8df, 0x8ff, 0x91f, 0x93f, 0x95f, 0x97f, 0x99f, 0x9bf, 0x9df, 0x9ff, 0xa1f, 0xa3f, 0xa5f, 0xa7f, 0xa9f, 0xabf, 0xadf, 0xaff, 0xb1f, 0xb3f, 0xb5f, 0xb7f, 0xb9f, 0xbbf, 0xbdf, 0xbff, 0xc1f, 0xc3f, 0xc5f, 0xc7f, 0xc9f, 0xcbf, 0xcdf, 0xcff, 0xd1f, 0xd3f, 0xd5f, 0xd7f, 0xd9f, 0xdbf, 0xddf, 0xdff, 0xe1f, 0xe3f, 0xe5f, 0xe7f, 0xe9f, 0xebf, 0xedf, 0xeff, 0xf1f, 0xf3f, 0xf5f, 0xf7f, 0xf9f, 0xfbf, 0xfdf,
 | |
|     0xfff, 0xfdf, 0xfbf, 0xf9f, 0xf7f, 0xf5f, 0xf3f, 0xf1f, 0xeff, 0xedf, 0xebf, 0xe9f, 0xe7f, 0xe5f, 0xe3f, 0xe1f, 0xdff, 0xddf, 0xdbf, 0xd9f, 0xd7f, 0xd5f, 0xd3f, 0xd1f, 0xcff, 0xcdf, 0xcbf, 0xc9f, 0xc7f, 0xc5f, 0xc3f, 0xc1f, 0xbff, 0xbdf, 0xbbf, 0xb9f, 0xb7f, 0xb5f, 0xb3f, 0xb1f, 0xaff, 0xadf, 0xabf, 0xa9f, 0xa7f, 0xa5f, 0xa3f, 0xa1f, 0x9ff, 0x9df, 0x9bf, 0x99f, 0x97f, 0x95f, 0x93f, 0x91f, 0x8ff, 0x8df, 0x8bf, 0x89f, 0x87f, 0x85f, 0x83f, 0x81f, 0x800, 0x7e0, 0x7c0, 0x7a0, 0x780, 0x760, 0x740, 0x720, 0x700, 0x6e0, 0x6c0, 0x6a0, 0x680, 0x660, 0x640, 0x620, 0x600, 0x5e0, 0x5c0, 0x5a0, 0x580, 0x560, 0x540, 0x520, 0x500, 0x4e0, 0x4c0, 0x4a0, 0x480, 0x460, 0x440, 0x420, 0x400, 0x3e0, 0x3c0, 0x3a0, 0x380, 0x360, 0x340, 0x320, 0x300, 0x2e0, 0x2c0, 0x2a0, 0x280, 0x260, 0x240, 0x220, 0x200, 0x1e0, 0x1c0, 0x1a0, 0x180, 0x160, 0x140, 0x120, 0x100, 0xe0,  0xc0,  0xa0,  0x80,  0x60,  0x40,  0x20};
 | |
| #endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
 | |
| #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
 | |
| static const dacsample_t dac_buffer_square[AUDIO_DAC_BUFFER_SIZE] = {
 | |
|     [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = 0,                    // first and
 | |
|     [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, // second half
 | |
| };
 | |
| #endif // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
 | |
| /*
 | |
| // four steps: 0, 1/3, 2/3 and 1
 | |
| static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = {
 | |
|     [0 ... AUDIO_DAC_BUFFER_SIZE/3 -1 ]                               = 0,
 | |
|     [AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE / 2 -1 ]     = AUDIO_DAC_SAMPLE_MAX / 3,
 | |
|     [AUDIO_DAC_BUFFER_SIZE / 2 ... 3 * AUDIO_DAC_BUFFER_SIZE / 4 -1 ] = 2 * AUDIO_DAC_SAMPLE_MAX / 3,
 | |
|     [3 * AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE -1 ]     = AUDIO_DAC_SAMPLE_MAX,
 | |
| }
 | |
| */
 | |
| #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
 | |
| static const dacsample_t dac_buffer_trapezoid[AUDIO_DAC_BUFFER_SIZE] = {0x0,   0x1f,  0x7f,  0xdf,  0x13f, 0x19f, 0x1ff, 0x25f, 0x2bf, 0x31f, 0x37f, 0x3df, 0x43f, 0x49f, 0x4ff, 0x55f, 0x5bf, 0x61f, 0x67f, 0x6df, 0x73f, 0x79f, 0x7ff, 0x85f, 0x8bf, 0x91f, 0x97f, 0x9df, 0xa3f, 0xa9f, 0xaff, 0xb5f, 0xbbf, 0xc1f, 0xc7f, 0xcdf, 0xd3f, 0xd9f, 0xdff, 0xe5f, 0xebf, 0xf1f, 0xf7f, 0xfdf, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,
 | |
|                                                                         0xfff, 0xfdf, 0xf7f, 0xf1f, 0xebf, 0xe5f, 0xdff, 0xd9f, 0xd3f, 0xcdf, 0xc7f, 0xc1f, 0xbbf, 0xb5f, 0xaff, 0xa9f, 0xa3f, 0x9df, 0x97f, 0x91f, 0x8bf, 0x85f, 0x7ff, 0x79f, 0x73f, 0x6df, 0x67f, 0x61f, 0x5bf, 0x55f, 0x4ff, 0x49f, 0x43f, 0x3df, 0x37f, 0x31f, 0x2bf, 0x25f, 0x1ff, 0x19f, 0x13f, 0xdf,  0x7f,  0x1f,  0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0};
 | |
| #endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
 | |
| 
 | |
| static dacsample_t dac_buffer_empty[AUDIO_DAC_BUFFER_SIZE] = {AUDIO_DAC_OFF_VALUE};
 | |
| 
 | |
| /* keep track of the sample position for for each frequency */
 | |
| static float dac_if[AUDIO_MAX_SIMULTANEOUS_TONES] = {0.0};
 | |
| 
 | |
| static float   active_tones_snapshot[AUDIO_MAX_SIMULTANEOUS_TONES] = {0, 0};
 | |
| static uint8_t active_tones_snapshot_length                        = 0;
 | |
| 
 | |
| typedef enum {
 | |
|     OUTPUT_SHOULD_START,
 | |
|     OUTPUT_RUN_NORMALLY,
 | |
|     // path 1: wait for zero, then change/update active tones
 | |
|     OUTPUT_TONES_CHANGED,
 | |
|     OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE,
 | |
|     // path 2: hardware should stop, wait for zero then turn output off = stop the timer
 | |
|     OUTPUT_SHOULD_STOP,
 | |
|     OUTPUT_REACHED_ZERO_BEFORE_OFF,
 | |
|     OUTPUT_OFF,
 | |
|     OUTPUT_OFF_1,
 | |
|     OUTPUT_OFF_2, // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level
 | |
|     number_of_output_states
 | |
| } output_states_t;
 | |
| output_states_t state = OUTPUT_OFF_2;
 | |
| 
 | |
| /**
 | |
|  * Generation of the waveform being passed to the callback. Declared weak so users
 | |
|  * can override it with their own wave-forms/noises.
 | |
|  */
 | |
| __attribute__((weak)) uint16_t dac_value_generate(void) {
 | |
|     // DAC is running/asking for values but snapshot length is zero -> must be playing a pause
 | |
|     if (active_tones_snapshot_length == 0) {
 | |
|         return AUDIO_DAC_OFF_VALUE;
 | |
|     }
 | |
| 
 | |
|     /* doing additive wave synthesis over all currently playing tones = adding up
 | |
|      * sine-wave-samples for each frequency, scaled by the number of active tones
 | |
|      */
 | |
|     uint16_t value     = 0;
 | |
|     float    frequency = 0.0f;
 | |
| 
 | |
|     for (uint8_t i = 0; i < active_tones_snapshot_length; i++) {
 | |
|         /* Note: a user implementation does not have to rely on the active_tones_snapshot, but
 | |
|          * could directly query the active frequencies through audio_get_processed_frequency */
 | |
|         frequency = active_tones_snapshot[i];
 | |
| 
 | |
|         dac_if[i] = dac_if[i] + ((frequency * AUDIO_DAC_BUFFER_SIZE) / AUDIO_DAC_SAMPLE_RATE) * 2 / 3;
 | |
|         /*Note: the 2/3 are necessary to get the correct frequencies on the
 | |
|          *      DAC output (as measured with an oscilloscope), since the gpt
 | |
|          *      timer runs with 3*AUDIO_DAC_SAMPLE_RATE; and the DAC callback
 | |
|          *      is called twice per conversion.*/
 | |
| 
 | |
|         dac_if[i] = fmod(dac_if[i], AUDIO_DAC_BUFFER_SIZE);
 | |
| 
 | |
|         // Wavetable generation/lookup
 | |
|         uint16_t dac_i = (uint16_t)dac_if[i];
 | |
| 
 | |
| #if defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE)
 | |
|         value += dac_buffer_sine[dac_i] / active_tones_snapshot_length;
 | |
| #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE)
 | |
|         value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length;
 | |
| #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID)
 | |
|         value += dac_buffer_trapezoid[dac_i] / active_tones_snapshot_length;
 | |
| #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE)
 | |
|         value += dac_buffer_square[dac_i] / active_tones_snapshot_length;
 | |
| #endif
 | |
|         /*
 | |
|         // SINE
 | |
|         value += dac_buffer_sine[dac_i] / active_tones_snapshot_length / 3;
 | |
|         // TRIANGLE
 | |
|         value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length / 3;
 | |
|         // SQUARE
 | |
|         value += dac_buffer_square[dac_i] / active_tones_snapshot_length / 3;
 | |
|         //NOTE: combination of these three wave-forms is more exemplary - and doesn't sound particularly good :-P
 | |
|         */
 | |
| 
 | |
|         // STAIRS (mostly usefully as test-pattern)
 | |
|         // value_avg = dac_buffer_staircase[dac_i] / active_tones_snapshot_length;
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * DAC streaming callback. Does all of the main computing for playing songs.
 | |
|  *
 | |
|  * Note: chibios calls this CB twice: during the 'half buffer event', and the 'full buffer event'.
 | |
|  */
 | |
| static void dac_end(DACDriver *dacp) {
 | |
|     dacsample_t *sample_p = (dacp)->samples;
 | |
| 
 | |
|     // work on the other half of the buffer
 | |
|     if (dacIsBufferComplete(dacp)) {
 | |
|         sample_p += AUDIO_DAC_BUFFER_SIZE / 2; // 'half_index'
 | |
|     }
 | |
| 
 | |
|     for (uint8_t s = 0; s < AUDIO_DAC_BUFFER_SIZE / 2; s++) {
 | |
|         if (OUTPUT_OFF <= state) {
 | |
|             sample_p[s] = AUDIO_DAC_OFF_VALUE;
 | |
|             continue;
 | |
|         } else {
 | |
|             sample_p[s] = dac_value_generate();
 | |
|         }
 | |
| 
 | |
|         /* zero crossing (or approach, whereas zero == DAC_OFF_VALUE, which can be configured to anything from 0 to DAC_SAMPLE_MAX)
 | |
|          * ============================*=*========================== AUDIO_DAC_SAMPLE_MAX
 | |
|          *                          *       *
 | |
|          *                        *           *
 | |
|          * ---------------------------------------------------------
 | |
|          *                     *                 *                  } AUDIO_DAC_SAMPLE_MAX/100
 | |
|          * --------------------------------------------------------- AUDIO_DAC_OFF_VALUE
 | |
|          *                  *                       *               } AUDIO_DAC_SAMPLE_MAX/100
 | |
|          * ---------------------------------------------------------
 | |
|          *               *
 | |
|          * *           *
 | |
|          *   *       *
 | |
|          * =====*=*================================================= 0x0
 | |
|          */
 | |
|         if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) && // value approaches from below
 | |
|             (sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100)))    // or above
 | |
|         ) {
 | |
|             if ((OUTPUT_SHOULD_START == state) && (active_tones_snapshot_length > 0)) {
 | |
|                 state = OUTPUT_RUN_NORMALLY;
 | |
|             } else if (OUTPUT_TONES_CHANGED == state) {
 | |
|                 state = OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE;
 | |
|             } else if (OUTPUT_SHOULD_STOP == state) {
 | |
|                 state = OUTPUT_REACHED_ZERO_BEFORE_OFF;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // still 'ramping up', reset the output to OFF_VALUE until the generated values reach that value, to do a smooth handover
 | |
|         if (OUTPUT_SHOULD_START == state) {
 | |
|             sample_p[s] = AUDIO_DAC_OFF_VALUE;
 | |
|         }
 | |
| 
 | |
|         if ((OUTPUT_SHOULD_START == state) || (OUTPUT_REACHED_ZERO_BEFORE_OFF == state) || (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state)) {
 | |
|             uint8_t active_tones         = MIN(AUDIO_MAX_SIMULTANEOUS_TONES, audio_get_number_of_active_tones());
 | |
|             active_tones_snapshot_length = 0;
 | |
|             // update the snapshot - once, and only on occasion that something changed;
 | |
|             // -> saves cpu cycles (?)
 | |
|             for (uint8_t i = 0; i < active_tones; i++) {
 | |
|                 float freq = audio_get_processed_frequency(i);
 | |
|                 if (freq > 0) { // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step
 | |
|                     active_tones_snapshot[active_tones_snapshot_length++] = freq;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ((0 == active_tones_snapshot_length) && (OUTPUT_REACHED_ZERO_BEFORE_OFF == state)) {
 | |
|                 state = OUTPUT_OFF;
 | |
|             }
 | |
|             if (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state) {
 | |
|                 state = OUTPUT_RUN_NORMALLY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // update audio internal state (note position, current_note, ...)
 | |
|     if (audio_update_state()) {
 | |
|         if (OUTPUT_SHOULD_STOP != state) {
 | |
|             state = OUTPUT_TONES_CHANGED;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (OUTPUT_OFF <= state) {
 | |
|         if (OUTPUT_OFF_2 == state) {
 | |
|             // stopping timer6 = stopping the DAC at whatever value it is currently pushing to the output = AUDIO_DAC_OFF_VALUE
 | |
|             gptStopTimer(&GPTD6);
 | |
|         } else {
 | |
|             state++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dac_error(DACDriver *dacp, dacerror_t err) {
 | |
|     (void)dacp;
 | |
|     (void)err;
 | |
| 
 | |
|     chSysHalt("DAC failure. halp");
 | |
| }
 | |
| 
 | |
| static const GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE * 3,
 | |
|                                    .callback  = NULL,
 | |
|                                    .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.  */
 | |
|                                    .dier      = 0U};
 | |
| 
 | |
| static const DACConfig dac_conf = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | |
| 
 | |
| /**
 | |
|  * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
 | |
|  * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
 | |
|  * to be a third of what we expect.
 | |
|  *
 | |
|  * Here are all the values for DAC_TRG (TSEL in the ref manual)
 | |
|  * TIM15_TRGO 0b011
 | |
|  * TIM2_TRGO  0b100
 | |
|  * TIM3_TRGO  0b001
 | |
|  * TIM6_TRGO  0b000
 | |
|  * TIM7_TRGO  0b010
 | |
|  * EXTI9      0b110
 | |
|  * SWTRIG     0b111
 | |
|  */
 | |
| static const DACConversionGroup dac_conv_cfg = {.num_channels = 1U, .end_cb = dac_end, .error_cb = dac_error, .trigger = DAC_TRG(0b000)};
 | |
| 
 | |
| void audio_driver_initialize() {
 | |
|     if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | |
|         palSetLineMode(A4, PAL_MODE_INPUT_ANALOG);
 | |
|         dacStart(&DACD1, &dac_conf);
 | |
|     }
 | |
|     if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | |
|         palSetLineMode(A5, PAL_MODE_INPUT_ANALOG);
 | |
|         dacStart(&DACD2, &dac_conf);
 | |
|     }
 | |
| 
 | |
|     /* enable the output buffer, to directly drive external loads with no additional circuitry
 | |
|      *
 | |
|      * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
 | |
|      * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
 | |
|      * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
 | |
|      *
 | |
|      * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
 | |
|      * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
 | |
|      */
 | |
|     DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
 | |
|     DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
 | |
| 
 | |
|     if (AUDIO_PIN == A4) {
 | |
|         dacStartConversion(&DACD1, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE);
 | |
|     } else if (AUDIO_PIN == A5) {
 | |
|         dacStartConversion(&DACD2, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE);
 | |
|     }
 | |
| 
 | |
|     // no inverted/out-of-phase waveform (yet?), only pulling AUDIO_PIN_ALT to AUDIO_DAC_OFF_VALUE
 | |
| #if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | |
|     if (AUDIO_PIN_ALT == A4) {
 | |
|         dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
 | |
|     } else if (AUDIO_PIN_ALT == A5) {
 | |
|         dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     gptStart(&GPTD6, &gpt6cfg1);
 | |
| }
 | |
| 
 | |
| void audio_driver_stop(void) {
 | |
|     state = OUTPUT_SHOULD_STOP;
 | |
| }
 | |
| 
 | |
| void audio_driver_start(void) {
 | |
|     gptStartContinuous(&GPTD6, 2U);
 | |
| 
 | |
|     for (uint8_t i = 0; i < AUDIO_MAX_SIMULTANEOUS_TONES; i++) {
 | |
|         dac_if[i]                = 0.0f;
 | |
|         active_tones_snapshot[i] = 0.0f;
 | |
|     }
 | |
|     active_tones_snapshot_length = 0;
 | |
|     state                        = OUTPUT_SHOULD_START;
 | |
| }
 | 
