Seperated out OTG, Device and Host mode demos into seperate folders for clarity. Adjusted makefiles so that the path to the LUFA library can be set in one place.

This commit is contained in:
Dean Camera 2009-03-20 06:34:41 +00:00
parent ecf7538430
commit ed031c1df2
209 changed files with 522 additions and 372 deletions

View file

@ -0,0 +1,477 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Functions to manage the physical dataflash media, including reading and writing of
* blocks of data. These functions are called by the SCSI layer when data must be stored
* or retrieved to/from the physical storage media. If a different media is used (such
* as a SD card or EEPROM), functions similar to these will need to be generated.
*/
#define INCLUDE_FROM_DATAFLASHMANAGER_C
#include "DataflashManager.h"
/** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board dataflash IC(s), from
* the pre-selected data OUT endpoint. This routine reads in OS sized blocks from the endpoint and writes
* them to the dataflash in Dataflash page sized blocks.
*
* \param BlockAddress Data block starting address for the write sequence
* \param TotalBlocks Number of blocks of data to write
*/
void DataflashManager_WriteBlocks(const uint32_t BlockAddress, uint16_t TotalBlocks)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
/* Copy selected dataflash's current page contents to the dataflash buffer */
Dataflash_SelectChipFromPage(CurrDFPage);
Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
/* Send the dataflash buffer write command */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, CurrDFPageByte);
/* Wait until endpoint is ready before continuing */
while (!(Endpoint_ReadWriteAllowed()));
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if the endpoint is currently empty */
if (!(Endpoint_ReadWriteAllowed()))
{
/* Clear the current endpoint bank */
Endpoint_ClearCurrentBank();
/* Wait until the host has sent another packet */
while (!(Endpoint_ReadWriteAllowed()));
}
/* Check if end of dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Write the dataflash buffer contents back to the dataflash page */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0);
/* Reset the dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Select the next dataflash chip based on the new dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
Dataflash_WaitWhileBusy();
#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
/* If less than one dataflash page remaining, copy over the existing page to preserve trailing data */
if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4))
{
/* Copy selected dataflash's current page contents to the dataflash buffer */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
}
#endif
/* Send the dataflash buffer write command */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, 0);
}
/* Write one 16-byte chunk of data to the dataflash */
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
Dataflash_SendByte(Endpoint_Read_Byte());
/* Increment the dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
}
/* Decrement the blocks remaining counter and reset the sub block counter */
TotalBlocks--;
}
/* Write the dataflash buffer contents back to the dataflash page */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0x00);
Dataflash_WaitWhileBusy();
/* If the endpoint is empty, clear it ready for the next packet from the host */
if (!(Endpoint_ReadWriteAllowed()))
Endpoint_ClearCurrentBank();
/* Deselect all dataflash chips */
Dataflash_DeselectChip();
}
/** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board dataflash IC(s), into
* the pre-selected data IN endpoint. This routine reads in Dataflash page sized blocks from the Dataflash
* and writes them in OS sized blocks to the endpoint.
*
* \param BlockAddress Data block starting address for the read sequence
* \param TotalBlocks Number of blocks of data to read
*/
void DataflashManager_ReadBlocks(const uint32_t BlockAddress, uint16_t TotalBlocks)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
/* Send the dataflash main memory page read command */
Dataflash_SelectChipFromPage(CurrDFPage);
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
/* Wait until endpoint is ready before continuing */
while (!(Endpoint_ReadWriteAllowed()));
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if the endpoint is currently full */
if (!(Endpoint_ReadWriteAllowed()))
{
/* Clear the endpoint bank to send its contents to the host */
Endpoint_ClearCurrentBank();
/* Wait until the endpoint is ready for more data */
while (!(Endpoint_ReadWriteAllowed()));
}
/* Check if end of dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Reset the dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Select the next dataflash chip based on the new dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
/* Send the dataflash main memory page read command */
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
}
/* Read one 16-byte chunk of data from the dataflash */
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
Endpoint_Write_Byte(Dataflash_ReceiveByte());
/* Increment the dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
}
/* Decrement the blocks remaining counter */
TotalBlocks--;
}
/* If the endpoint is full, send its contents to the host */
if (!(Endpoint_ReadWriteAllowed()))
Endpoint_ClearCurrentBank();
/* Deselect all dataflash chips */
Dataflash_DeselectChip();
}
/** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board dataflash IC(s), from
* the a given RAM buffer. This routine reads in OS sized blocks from the buffer and writes them to the
* dataflash in Dataflash page sized blocks. This can be linked to FAT libraries to write files to the
* dataflash.
*
* \param BlockAddress Data block starting address for the write sequence
* \param TotalBlocks Number of blocks of data to write
* \param BufferPtr Pointer to the data source RAM buffer
*/
void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks, uint8_t* BufferPtr)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
/* Copy selected dataflash's current page contents to the dataflash buffer */
Dataflash_SelectChipFromPage(CurrDFPage);
Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
/* Send the dataflash buffer write command */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, CurrDFPageByte);
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if end of dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Write the dataflash buffer contents back to the dataflash page */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0);
/* Reset the dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Select the next dataflash chip based on the new dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
Dataflash_WaitWhileBusy();
#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
/* If less than one dataflash page remaining, copy over the existing page to preserve trailing data */
if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4))
{
/* Copy selected dataflash's current page contents to the dataflash buffer */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_WaitWhileBusy();
}
#endif
/* Send the dataflash buffer write command */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1WRITE);
Dataflash_SendAddressBytes(0, 0);
}
/* Write one 16-byte chunk of data to the dataflash */
for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++)
Dataflash_SendByte(*(BufferPtr++));
/* Increment the dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
}
/* Decrement the blocks remaining counter and reset the sub block counter */
TotalBlocks--;
}
/* Write the dataflash buffer contents back to the dataflash page */
Dataflash_ToggleSelectedChipCS();
Dataflash_SendByte(DF_CMD_BUFF1TOMAINMEMWITHERASE);
Dataflash_SendAddressBytes(CurrDFPage, 0x00);
Dataflash_WaitWhileBusy();
/* Deselect all dataflash chips */
Dataflash_DeselectChip();
}
/** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board dataflash IC(s), into
* the a preallocated RAM buffer. This routine reads in Dataflash page sized blocks from the Dataflash
* and writes them in OS sized blocks to the given buffer. This can be linked to FAT libraries to read
* the files stored on the dataflash.
*
* \param BlockAddress Data block starting address for the read sequence
* \param TotalBlocks Number of blocks of data to read
* \param BufferPtr Pointer to the data destination RAM buffer
*/
void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks, uint8_t* BufferPtr)
{
uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
/* Send the dataflash main memory page read command */
Dataflash_SelectChipFromPage(CurrDFPage);
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
while (TotalBlocks)
{
uint8_t BytesInBlockDiv16 = 0;
/* Write an endpoint packet sized data block to the dataflash */
while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
{
/* Check if end of dataflash page reached */
if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
{
/* Reset the dataflash buffer counter, increment the page counter */
CurrDFPageByteDiv16 = 0;
CurrDFPage++;
/* Select the next dataflash chip based on the new dataflash page index */
Dataflash_SelectChipFromPage(CurrDFPage);
/* Send the dataflash main memory page read command */
Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
Dataflash_SendAddressBytes(CurrDFPage, 0);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
Dataflash_SendByte(0x00);
}
/* Read one 16-byte chunk of data from the dataflash */
for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++)
*(BufferPtr++) = Dataflash_ReceiveByte();
/* Increment the dataflash page 16 byte block counter */
CurrDFPageByteDiv16++;
/* Increment the block 16 byte block counter */
BytesInBlockDiv16++;
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
}
/* Decrement the blocks remaining counter */
TotalBlocks--;
}
/* Deselect all dataflash chips */
Dataflash_DeselectChip();
}
/** Disables the dataflash memory write protection bits on the board Dataflash ICs, if enabled. */
void DataflashManager_ResetDataflashProtections(void)
{
/* Select first dataflash chip, send the read status register command */
Dataflash_SelectChip(DATAFLASH_CHIP1);
Dataflash_SendByte(DF_CMD_GETSTATUS);
/* Check if sector protection is enabled */
if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON)
{
Dataflash_ToggleSelectedChipCS();
/* Send the commands to disable sector protection */
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]);
}
/* Select second dataflash chip (if present on selected board), send read status register command */
#if (DATAFLASH_TOTALCHIPS == 2)
Dataflash_SelectChip(DATAFLASH_CHIP2);
Dataflash_SendByte(DF_CMD_GETSTATUS);
/* Check if sector protection is enabled */
if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON)
{
Dataflash_ToggleSelectedChipCS();
/* Send the commands to disable sector protection */
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]);
Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]);
}
#endif
/* Deselect current dataflash chip */
Dataflash_DeselectChip();
}

View file

@ -0,0 +1,75 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for DataflashManager.c.
*/
#ifndef _DATAFLASH_MANAGER_H
#define _DATAFLASH_MANAGER_H
/* Includes: */
#include <avr/io.h>
#include "MassStorage.h"
#include "Descriptors.h"
#include <LUFA/Common/Common.h> // Function Attribute, Atomic, Debug and ISR Macros
#include <LUFA/Drivers/USB/USB.h> // USB Functionality
#include <LUFA/Drivers/Board/Dataflash.h> // Dataflash chip driver
/* Preprocessor Checks: */
#if (DATAFLASH_PAGE_SIZE % 16)
#error Dataflash page size must be a multiple of 16 bytes.
#endif
/* Defines: */
/** Total number of bytes of the storage medium, comprised of one or more dataflash ICs. */
#define VIRTUAL_MEMORY_BYTES ((uint32_t)DATAFLASH_PAGES * DATAFLASH_PAGE_SIZE * DATAFLASH_TOTALCHIPS)
/** Block size of the device. This is kept at 512 to remain compatible with the OS despite the underlying
* storage media (Dataflash) using a different native block size.
*/
#define VIRTUAL_MEMORY_BLOCK_SIZE 512
/** Total number of blocks of the virtual memory for reporting to the host as the device's total capacity. */
#define VIRTUAL_MEMORY_BLOCKS (VIRTUAL_MEMORY_BYTES / VIRTUAL_MEMORY_BLOCK_SIZE)
/* Function Prototypes: */
void DataflashManager_WriteBlocks(const uint32_t BlockAddress, uint16_t TotalBlocks);
void DataflashManager_ReadBlocks(const uint32_t BlockAddress, uint16_t TotalBlocks);
void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks,
uint8_t* BufferPtr) ATTR_NON_NULL_PTR_ARG(3);
void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks,
uint8_t* BufferPtr) ATTR_NON_NULL_PTR_ARG(3);
void DataflashManager_ResetDataflashProtections(void);
#endif

View file

@ -0,0 +1,223 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** Device descriptor structure. This descriptor, located in FLASH memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
USB_Descriptor_Device_t PROGMEM DeviceDescriptor =
{
Header: {Size: sizeof(USB_Descriptor_Device_t), Type: DTYPE_Device},
USBSpecification: VERSION_BCD(01.10),
Class: 0x00,
SubClass: 0x00,
Protocol: 0x00,
Endpoint0Size: 8,
VendorID: 0x03EB,
ProductID: 0x2045,
ReleaseNumber: 0x0000,
ManufacturerStrIndex: 0x01,
ProductStrIndex: 0x02,
SerialNumStrIndex: 0x03,
NumberOfConfigurations: 1
};
/** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
USB_Descriptor_Configuration_t PROGMEM ConfigurationDescriptor =
{
Config:
{
Header: {Size: sizeof(USB_Descriptor_Configuration_Header_t), Type: DTYPE_Configuration},
TotalConfigurationSize: sizeof(USB_Descriptor_Configuration_t),
TotalInterfaces: 1,
ConfigurationNumber: 1,
ConfigurationStrIndex: NO_DESCRIPTOR,
ConfigAttributes: USB_CONFIG_ATTR_BUSPOWERED,
MaxPowerConsumption: USB_CONFIG_POWER_MA(100)
},
Interface:
{
Header: {Size: sizeof(USB_Descriptor_Interface_t), Type: DTYPE_Interface},
InterfaceNumber: 0,
AlternateSetting: 0,
TotalEndpoints: 2,
Class: 0x08,
SubClass: 0x06,
Protocol: 0x50,
InterfaceStrIndex: NO_DESCRIPTOR
},
DataInEndpoint:
{
Header: {Size: sizeof(USB_Descriptor_Endpoint_t), Type: DTYPE_Endpoint},
EndpointAddress: (ENDPOINT_DESCRIPTOR_DIR_IN | MASS_STORAGE_IN_EPNUM),
Attributes: EP_TYPE_BULK,
EndpointSize: MASS_STORAGE_IO_EPSIZE,
PollingIntervalMS: 0x00
},
DataOutEndpoint:
{
Header: {Size: sizeof(USB_Descriptor_Endpoint_t), Type: DTYPE_Endpoint},
EndpointAddress: (ENDPOINT_DESCRIPTOR_DIR_OUT | MASS_STORAGE_OUT_EPNUM),
Attributes: EP_TYPE_BULK,
EndpointSize: MASS_STORAGE_IO_EPSIZE,
PollingIntervalMS: 0x00
}
};
/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
USB_Descriptor_String_t PROGMEM LanguageString =
{
Header: {Size: USB_STRING_LEN(1), Type: DTYPE_String},
UnicodeString: {LANGUAGE_ID_ENG}
};
/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
* form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
USB_Descriptor_String_t PROGMEM ManufacturerString =
{
Header: {Size: USB_STRING_LEN(11), Type: DTYPE_String},
UnicodeString: L"Dean Camera"
};
/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
* and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
USB_Descriptor_String_t PROGMEM ProductString =
{
Header: {Size: USB_STRING_LEN(22), Type: DTYPE_String},
UnicodeString: L"LUFA Mass Storage Demo"
};
/** Serial number descriptor string. This is a Unicode string containing a string of HEX characters at least 12
* digits in length to uniquely identify a device when concatenated with the device's Vendor and Product IDs. By
* using the unique serial number string to identify a device, the device drivers do not need to be reinstalled
* each time the device is inserted into a different USB port on the same system. <b>This should be unique between
* devices, or conflicts will occur if two devices sharing the same serial number are inserted into the same system
* at the same time.</b>
*/
USB_Descriptor_String_t PROGMEM SerialNumberString =
{
Header: {Size: USB_STRING_LEN(12), Type: DTYPE_String},
UnicodeString: L"000000000000"
};
/** This function is called by the library when in device mode, and must be overridden (see StdDescriptors.h
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device recieves a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType)
{
case DTYPE_Device:
Address = DESCRIPTOR_ADDRESS(DeviceDescriptor);
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = DESCRIPTOR_ADDRESS(ConfigurationDescriptor);
Size = sizeof(USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
switch (DescriptorNumber)
{
case 0x00:
Address = DESCRIPTOR_ADDRESS(LanguageString);
Size = pgm_read_byte(&LanguageString.Header.Size);
break;
case 0x01:
Address = DESCRIPTOR_ADDRESS(ManufacturerString);
Size = pgm_read_byte(&ManufacturerString.Header.Size);
break;
case 0x02:
Address = DESCRIPTOR_ADDRESS(ProductString);
Size = pgm_read_byte(&ProductString.Header.Size);
break;
case 0x03:
Address = DESCRIPTOR_ADDRESS(SerialNumberString);
Size = pgm_read_byte(&SerialNumberString.Header.Size);
break;
}
break;
}
*DescriptorAddress = Address;
return Size;
}

View file

@ -0,0 +1,71 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for Descriptors.c.
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <LUFA/Drivers/USB/USB.h>
#include <avr/pgmspace.h>
/* Macros: */
/** Endpoint number of the Mass Storage device-to-host data IN endpoint. */
#define MASS_STORAGE_IN_EPNUM 3
/** Endpoint number of the Mass Storage host-to-device data OUT endpoint. */
#define MASS_STORAGE_OUT_EPNUM 4
/** Size in bytes of the Mass Storage data endpoints. */
#define MASS_STORAGE_IO_EPSIZE 64
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
USB_Descriptor_Interface_t Interface;
USB_Descriptor_Endpoint_t DataInEndpoint;
USB_Descriptor_Endpoint_t DataOutEndpoint;
} USB_Descriptor_Configuration_t;
/* Function Prototypes: */
uint16_t USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, void** const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3);
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1 @@
<AVRStudio><MANAGEMENT><ProjectName>MassStorage</ProjectName><Created>30-Sep-2008 14:12:09</Created><LastEdit>30-Sep-2008 14:12:25</LastEdit><ICON>241</ICON><ProjectType>0</ProjectType><Created>30-Sep-2008 14:12:09</Created><Version>4</Version><Build>4, 14, 0, 589</Build><ProjectTypeName>AVR GCC</ProjectTypeName></MANAGEMENT><CODE_CREATION><ObjectFile></ObjectFile><EntryFile></EntryFile><SaveFolder>C:\Users\Dean\Documents\Electronics\Projects\WORK\MyUSBWORK\Demos\MassStorage\</SaveFolder></CODE_CREATION><DEBUG_TARGET><CURRENT_TARGET>JTAGICE mkII</CURRENT_TARGET><CURRENT_PART>AT90USB1287.xml</CURRENT_PART><BREAKPOINTS></BREAKPOINTS><IO_EXPAND><HIDE>false</HIDE></IO_EXPAND><REGISTERNAMES><Register>R00</Register><Register>R01</Register><Register>R02</Register><Register>R03</Register><Register>R04</Register><Register>R05</Register><Register>R06</Register><Register>R07</Register><Register>R08</Register><Register>R09</Register><Register>R10</Register><Register>R11</Register><Register>R12</Register><Register>R13</Register><Register>R14</Register><Register>R15</Register><Register>R16</Register><Register>R17</Register><Register>R18</Register><Register>R19</Register><Register>R20</Register><Register>R21</Register><Register>R22</Register><Register>R23</Register><Register>R24</Register><Register>R25</Register><Register>R26</Register><Register>R27</Register><Register>R28</Register><Register>R29</Register><Register>R30</Register><Register>R31</Register></REGISTERNAMES><COM>Auto</COM><COMType>0</COMType><WATCHNUM>0</WATCHNUM><WATCHNAMES><Pane0></Pane0><Pane1></Pane1><Pane2></Pane2><Pane3></Pane3></WATCHNAMES><BreakOnTrcaeFull>0</BreakOnTrcaeFull></DEBUG_TARGET><Debugger><Triggers></Triggers></Debugger><AVRGCCPLUGIN><FILES><SOURCEFILE>DataflashManager.c</SOURCEFILE><SOURCEFILE>Descriptors.c</SOURCEFILE><SOURCEFILE>MassStorage.c</SOURCEFILE><SOURCEFILE>SCSI.c</SOURCEFILE><HEADERFILE>DataflashManager.h</HEADERFILE><HEADERFILE>Descriptors.h</HEADERFILE><HEADERFILE>MassStorage.h</HEADERFILE><HEADERFILE>SCSI.h</HEADERFILE><HEADERFILE>SCSI_Codes.h</HEADERFILE><OTHERFILE>makefile</OTHERFILE></FILES><CONFIGS><CONFIG><NAME>default</NAME><USESEXTERNALMAKEFILE>YES</USESEXTERNALMAKEFILE><EXTERNALMAKEFILE>makefile</EXTERNALMAKEFILE><PART>at90usb1287</PART><HEX>1</HEX><LIST>1</LIST><MAP>1</MAP><OUTPUTFILENAME>MassStorage.elf</OUTPUTFILENAME><OUTPUTDIR>default\</OUTPUTDIR><ISDIRTY>1</ISDIRTY><OPTIONS/><INCDIRS/><LIBDIRS/><LIBS/><LINKOBJECTS/><OPTIONSFORALL>-Wall -gdwarf-2 -std=gnu99 -Os -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums</OPTIONSFORALL><LINKEROPTIONS></LINKEROPTIONS><SEGMENTS/></CONFIG></CONFIGS><LASTCONFIG>default</LASTCONFIG><USES_WINAVR>1</USES_WINAVR><GCC_LOC>C:\WinAVR-20080512\bin\avr-gcc.exe</GCC_LOC><MAKE_LOC>C:\WinAVR-20080512\utils\bin\make.exe</MAKE_LOC></AVRGCCPLUGIN><IOView><usergroups/><sort sorted="0" column="0" ordername="0" orderaddress="0" ordergroup="0"/></IOView><Files></Files><Events><Bookmarks></Bookmarks></Events><Trace><Filters></Filters></Trace></AVRStudio>

View file

@ -0,0 +1,405 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the Mass Storage demo. This file contains the main tasks of the demo and
* is responsible for the initial application hardware configuration.
*/
#define INCLUDE_FROM_MASSSTORAGE_C
#include "MassStorage.h"
/* Project Tags, for reading out using the ButtLoad project */
BUTTLOADTAG(ProjName, "LUFA MassStore App");
BUTTLOADTAG(BuildTime, __TIME__);
BUTTLOADTAG(BuildDate, __DATE__);
BUTTLOADTAG(LUFAVersion, "LUFA V" LUFA_VERSION_STRING);
/* Scheduler Task List */
TASK_LIST
{
{ Task: USB_MassStorage , TaskStatus: TASK_STOP },
};
/* Global Variables */
/** Structure to hold the latest Command Block Wrapper issued by the host, containing a SCSI command to execute. */
CommandBlockWrapper_t CommandBlock;
/** Structure to hold the latest Command Status Wrapper to return to the host, containing the status of the last issued command. */
CommandStatusWrapper_t CommandStatus = { Signature: CSW_SIGNATURE };
/** Flag to asyncronously abort any in-progress data transfers upon the reception of a mass storage reset command. */
volatile bool IsMassStoreReset = false;
/** Main program entry point. This routine configures the hardware required by the application, then
* starts the scheduler to run the application tasks.
*/
int main(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
/* Hardware Initialization */
LEDs_Init();
Dataflash_Init(SPI_SPEED_FCPU_DIV_2);
/* Clear Dataflash sector protections, if enabled */
DataflashManager_ResetDataflashProtections();
/* Indicate USB not ready */
UpdateStatus(Status_USBNotReady);
/* Initialize Scheduler so that it can be used */
Scheduler_Init();
/* Initialize USB Subsystem */
USB_Init();
/* Scheduling - routine never returns, so put this last in the main function */
Scheduler_Start();
}
/** Event handler for the USB_Reset event. This fires when the USB interface is reset by the USB host, before the
* enumeration process begins, and enables the control endpoint interrupt so that control requests can be handled
* asynchronously when they arrive rather than when the control endpoint is polled manually.
*/
EVENT_HANDLER(USB_Reset)
{
/* Select the control endpoint */
Endpoint_SelectEndpoint(ENDPOINT_CONTROLEP);
/* Enable the endpoint SETUP interrupt ISR for the control endpoint */
USB_INT_Enable(ENDPOINT_INT_SETUP);
}
/** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs. */
EVENT_HANDLER(USB_Connect)
{
/* Indicate USB enumerating */
UpdateStatus(Status_USBEnumerating);
/* Reset the MSReset flag upon connection */
IsMassStoreReset = false;
}
/** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via
* the status LEDs and stops the Mass Storage management task.
*/
EVENT_HANDLER(USB_Disconnect)
{
/* Stop running mass storage task */
Scheduler_SetTaskMode(USB_MassStorage, TASK_STOP);
/* Indicate USB not ready */
UpdateStatus(Status_USBNotReady);
}
/** Event handler for the USB_ConfigurationChanged event. This is fired when the host set the current configuration
* of the USB device after enumeration - the device endpoints are configured and the Mass Storage management task started.
*/
EVENT_HANDLER(USB_ConfigurationChanged)
{
/* Setup Mass Storage In and Out Endpoints */
Endpoint_ConfigureEndpoint(MASS_STORAGE_IN_EPNUM, EP_TYPE_BULK,
ENDPOINT_DIR_IN, MASS_STORAGE_IO_EPSIZE,
ENDPOINT_BANK_DOUBLE);
Endpoint_ConfigureEndpoint(MASS_STORAGE_OUT_EPNUM, EP_TYPE_BULK,
ENDPOINT_DIR_OUT, MASS_STORAGE_IO_EPSIZE,
ENDPOINT_BANK_DOUBLE);
/* Indicate USB connected and ready */
UpdateStatus(Status_USBReady);
/* Start mass storage task */
Scheduler_SetTaskMode(USB_MassStorage, TASK_RUN);
}
/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
* control requests that are not handled internally by the USB library (including the Mass Storage class-specific
* requests) so that they can be handled appropriately for the application.
*/
EVENT_HANDLER(USB_UnhandledControlPacket)
{
/* Process UFI specific control requests */
switch (bRequest)
{
case REQ_MassStorageReset:
if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSetupReceived();
/* Indicate that the current transfer should be aborted */
IsMassStoreReset = true;
/* Acknowledge status stage */
while (!(Endpoint_IsSetupINReady()));
Endpoint_ClearSetupIN();
}
break;
case REQ_GetMaxLUN:
if (bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
{
/* Indicate to the host the number of supported LUNs (virtual disks) on the device */
Endpoint_ClearSetupReceived();
Endpoint_Write_Byte(TOTAL_LUNS - 1);
Endpoint_ClearSetupIN();
/* Acknowledge status stage */
while (!(Endpoint_IsSetupOUTReceived()));
Endpoint_ClearSetupOUT();
}
break;
}
}
/** Function to manage status updates to the user. This is done via LEDs on the given board, if available, but may be changed to
* log to a serial port, or anything else that is suitable for status updates.
*
* \param CurrentStatus Current status of the system, from the MassStorage_StatusCodes_t enum
*/
void UpdateStatus(uint8_t CurrentStatus)
{
uint8_t LEDMask = LEDS_NO_LEDS;
/* Set the LED mask to the appropriate LED mask based on the given status code */
switch (CurrentStatus)
{
case Status_USBNotReady:
LEDMask = (LEDS_LED1);
break;
case Status_USBEnumerating:
LEDMask = (LEDS_LED1 | LEDS_LED2);
break;
case Status_USBReady:
LEDMask = (LEDS_LED2 | LEDS_LED4);
break;
case Status_CommandBlockError:
LEDMask = (LEDS_LED1);
break;
case Status_ProcessingCommandBlock:
LEDMask = (LEDS_LED1 | LEDS_LED2);
break;
}
/* Set the board LEDs to the new LED mask */
LEDs_SetAllLEDs(LEDMask);
}
/** Task to manage the Mass Storage interface, reading in Command Block Wrappers from the host, processing the SCSI commands they
* contain, and returning Command Status Wrappers back to the host to indicate the success or failure of the last issued command.
*/
TASK(USB_MassStorage)
{
/* Check if the USB System is connected to a Host */
if (USB_IsConnected)
{
/* Select the Data Out Endpoint */
Endpoint_SelectEndpoint(MASS_STORAGE_OUT_EPNUM);
/* Check to see if a command from the host has been issued */
if (Endpoint_ReadWriteAllowed())
{
/* Indicate busy */
UpdateStatus(Status_ProcessingCommandBlock);
/* Process sent command block from the host */
if (ReadInCommandBlock())
{
/* Check direction of command, select Data IN endpoint if data is from the device */
if (CommandBlock.Flags & COMMAND_DIRECTION_DATA_IN)
Endpoint_SelectEndpoint(MASS_STORAGE_IN_EPNUM);
/* Decode the received SCSI command */
SCSI_DecodeSCSICommand();
/* Load in the CBW tag into the CSW to link them together */
CommandStatus.Tag = CommandBlock.Tag;
/* Load in the data residue counter into the CSW */
CommandStatus.DataTransferResidue = CommandBlock.DataTransferLength;
/* Stall the selected data pipe if command failed (if data is still to be transferred) */
if ((CommandStatus.Status == Command_Fail) && (CommandStatus.DataTransferResidue))
Endpoint_StallTransaction();
/* Return command status block to the host */
ReturnCommandStatus();
/* Check if a Mass Storage Reset ocurred */
if (IsMassStoreReset)
{
/* Reset the data endpoint banks */
Endpoint_ResetFIFO(MASS_STORAGE_OUT_EPNUM);
Endpoint_ResetFIFO(MASS_STORAGE_IN_EPNUM);
/* Clear the abort transfer flag */
IsMassStoreReset = false;
}
/* Indicate ready */
UpdateStatus(Status_USBReady);
}
else
{
/* Indicate error reading in the command block from the host */
UpdateStatus(Status_CommandBlockError);
}
}
}
}
/** Function to read in a command block from the host, via the bulk data OUT endpoint. This function reads in the next command block
* if one has been issued, and performs validation to ensure that the block command is valid.
*
* \return Boolean true if a valid command block has been read in from the endpoint, false otherwise
*/
static bool ReadInCommandBlock(void)
{
/* Select the Data Out endpoint */
Endpoint_SelectEndpoint(MASS_STORAGE_OUT_EPNUM);
/* Read in command block header */
Endpoint_Read_Stream_LE(&CommandBlock, (sizeof(CommandBlock) - sizeof(CommandBlock.SCSICommandData)),
AbortOnMassStoreReset);
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return false;
/* Verify the command block - abort if invalid */
if ((CommandBlock.Signature != CBW_SIGNATURE) ||
(CommandBlock.LUN >= TOTAL_LUNS) ||
(CommandBlock.SCSICommandLength > MAX_SCSI_COMMAND_LENGTH))
{
/* Stall both data pipes until reset by host */
Endpoint_StallTransaction();
Endpoint_SelectEndpoint(MASS_STORAGE_IN_EPNUM);
Endpoint_StallTransaction();
return false;
}
/* Read in command block command data */
Endpoint_Read_Stream_LE(&CommandBlock.SCSICommandData,
CommandBlock.SCSICommandLength,
AbortOnMassStoreReset);
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return false;
/* Finalize the stream transfer to send the last packet */
Endpoint_ClearCurrentBank();
return true;
}
/** Returns the filled Command Status Wrapper back to the host via the bulk data IN endpoint, waiting for the host to clear any
* stalled data endpoints as needed.
*/
static void ReturnCommandStatus(void)
{
/* Select the Data Out endpoint */
Endpoint_SelectEndpoint(MASS_STORAGE_OUT_EPNUM);
/* While data pipe is stalled, wait until the host issues a control request to clear the stall */
while (Endpoint_IsStalled())
{
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
}
/* Select the Data In endpoint */
Endpoint_SelectEndpoint(MASS_STORAGE_IN_EPNUM);
/* While data pipe is stalled, wait until the host issues a control request to clear the stall */
while (Endpoint_IsStalled())
{
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
}
/* Write the CSW to the endpoint */
Endpoint_Write_Stream_LE(&CommandStatus, sizeof(CommandStatus),
AbortOnMassStoreReset);
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return;
/* Finalize the stream transfer to send the last packet */
Endpoint_ClearCurrentBank();
}
/** Stream callback function for the Endpoint stream read and write functions. This callback will abort the current stream transfer
* if a Mass Storage Reset request has been issued to the control endpoint.
*/
STREAM_CALLBACK(AbortOnMassStoreReset)
{
/* Abort if a Mass Storage reset command was received */
if (IsMassStoreReset)
return STREAMCALLBACK_Abort;
/* Continue with the current stream operation */
return STREAMCALLBACK_Continue;
}
/** ISR for the general Pipe/Endpoint interrupt vector. This ISR fires when a control request has been issued to the control endpoint,
* so that the request can be processed. As several elements of the Mass Storage implementation require asynchronous control requests
* (such as endpoint stall clearing and Mass Storage Reset requests during data transfers) this is done via interrupts rather than
* polling.
*/
ISR(ENDPOINT_PIPE_vect, ISR_BLOCK)
{
/* Check if the control endpoint has received a request */
if (Endpoint_HasEndpointInterrupted(ENDPOINT_CONTROLEP))
{
/* Clear the endpoint interrupt */
Endpoint_ClearEndpointInterrupt(ENDPOINT_CONTROLEP);
/* Process the control request */
USB_USBTask();
/* Handshake the endpoint setup interrupt - must be after the call to USB_USBTask() */
USB_INT_Clear(ENDPOINT_INT_SETUP);
}
}

View file

@ -0,0 +1,161 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for MassStorage.c.
*/
#ifndef _MASS_STORAGE_H_
#define _MASS_STORAGE_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include "Descriptors.h"
#include "SCSI.h"
#include "DataflashManager.h"
#include <LUFA/Version.h> // Library Version Information
#include <LUFA/Common/ButtLoadTag.h> // PROGMEM tags readable by the ButtLoad project
#include <LUFA/Drivers/USB/USB.h> // USB Functionality
#include <LUFA/Drivers/Board/LEDs.h> // LEDs driver
#include <LUFA/Drivers/Board/Dataflash.h> // Dataflash chip driver
#include <LUFA/Scheduler/Scheduler.h> // Simple scheduler for task management
/* Macros: */
/** Mass Storage Class specific request to reset the Mass Storage interface, ready for the next command. */
#define REQ_MassStorageReset 0xFF
/** Mass Storage Class specific request to retrieve the total number of Logical Units (drives) in the SCSI device. */
#define REQ_GetMaxLUN 0xFE
/** Maximum length of a SCSI command which can be issued by the device or host in a Mass Storage bulk wrapper. */
#define MAX_SCSI_COMMAND_LENGTH 16
/** Total number of Logical Units (drives) in the device. The total device capacity is shared equally between
* each drive - this can be set to any positive non-zero amount.
*/
#define TOTAL_LUNS 2
/** Blocks in each LUN, calculated from the total capacity divided by the total number of Logical Units in the device. */
#define LUN_MEDIA_BLOCKS (VIRTUAL_MEMORY_BLOCKS / TOTAL_LUNS)
/** Magic signature for a Command Block Wrapper used in the Mass Storage Bulk-Only transport protocol. */
#define CBW_SIGNATURE 0x43425355UL
/** Magic signature for a Command Status Wrapper used in the Mass Storage Bulk-Only transport protocol. */
#define CSW_SIGNATURE 0x53425355UL
/** Mask for a Command Block Wrapper's flags attribute to specify a command with data sent from host-to-device. */
#define COMMAND_DIRECTION_DATA_OUT (0 << 7)
/** Mask for a Command Block Wrapper's flags attribute to specify a command with data sent from device-to-host. */
#define COMMAND_DIRECTION_DATA_IN (1 << 7)
/* Type defines: */
/** Type define for a Command Block Wrapper, used in the Mass Storage Bulk-Only Transport protocol. */
typedef struct
{
uint32_t Signature; /**< Command block signature, must be CBW_SIGNATURE to indicate a valid Command Block */
uint32_t Tag; /**< Unique command ID value, to associate a command block wrapper with its command status wrapper */
uint32_t DataTransferLength; /** Length of the optional data portion of the issued command, in bytes */
uint8_t Flags; /**< Command block flags, indicating command data direction */
uint8_t LUN; /**< Logical Unit number this command is issued to */
uint8_t SCSICommandLength; /**< Length of the issued SCSI command within the SCSI command data array */
uint8_t SCSICommandData[MAX_SCSI_COMMAND_LENGTH]; /**< Issued SCSI command in the Command Block */
} CommandBlockWrapper_t;
/** Type define for a Command Status Wrapper, used in the Mass Storage Bulk-Only Transport protocol. */
typedef struct
{
uint32_t Signature; /**< Status block signature, must be CSW_SIGNATURE to indicate a valid Command Status */
uint32_t Tag; /**< Unique command ID value, to associate a command block wrapper with its command status wrapper */
uint32_t DataTransferResidue; /**< Number of bytes of data not processed in the SCSI command */
uint8_t Status; /**< Status code of the issued command - a value from the MassStorage_CommandStatusCodes_t enum */
} CommandStatusWrapper_t;
/* Enums: */
/** Enum for the possible command status wrapper return status codes. */
enum MassStorage_CommandStatusCodes_t
{
Command_Pass = 0, /**< Command completed with no error */
Command_Fail = 1, /**< Command failed to complete - host may check the exact error via a SCSI REQUEST SENSE command */
Phase_Error = 2 /**< Command failed due to being invalid in the current phase */
};
/** Enum for the possible status codes for passing to the UpdateStatus() function. */
enum MassStorage_StatusCodes_t
{
Status_USBNotReady = 0, /**< USB is not ready (disconnected from a USB host) */
Status_USBEnumerating = 1, /**< USB interface is enumerating */
Status_USBReady = 2, /**< USB interface is connected and ready */
Status_CommandBlockError = 3, /**< Processing a SCSI command block from the host */
Status_ProcessingCommandBlock = 4, /**< Error during the processing of a SCSI command block from the host */
};
/* Global Variables: */
extern CommandBlockWrapper_t CommandBlock;
extern CommandStatusWrapper_t CommandStatus;
extern volatile bool IsMassStoreReset;
/* Task Definitions: */
TASK(USB_MassStorage);
/* Stream Callbacks: */
STREAM_CALLBACK(AbortOnMassStoreReset);
/* Event Handlers: */
/** Indicates that this module will catch the USB_Reset event when thrown by the library. */
HANDLES_EVENT(USB_Reset);
/** Indicates that this module will catch the USB_Connect event when thrown by the library. */
HANDLES_EVENT(USB_Connect);
/** Indicates that this module will catch the USB_Disconnect event when thrown by the library. */
HANDLES_EVENT(USB_Disconnect);
/** Indicates that this module will catch the USB_ConfigurationChanged event when thrown by the library. */
HANDLES_EVENT(USB_ConfigurationChanged);
/** Indicates that this module will catch the USB_UnhandledControlPacket event when thrown by the library. */
HANDLES_EVENT(USB_UnhandledControlPacket);
/* Function Prototypes: */
void UpdateStatus(uint8_t CurrentStatus);
#if defined(INCLUDE_FROM_MASSSTORAGE_C)
static bool ReadInCommandBlock(void);
static void ReturnCommandStatus(void);
#endif
#endif

View file

@ -0,0 +1,78 @@
/** \file
*
* This file contains special DoxyGen information for the generation of the main page and other special
* documentation pages. It is not a project source file.
*/
/** \mainpage Mass Storage Device Demo
*
* \section SSec_Info USB Information:
*
* The following table gives a rundown of the USB utilization of this demo.
*
* <table>
* <tr>
* <td><b>USB Mode:</b></td>
* <td>Device</td>
* </tr>
* <tr>
* <td><b>USB Class:</b></td>
* <td>Mass Storage Device</td>
* </tr>
* <tr>
* <td><b>USB Subclass:</b></td>
* <td>Bulk-Only Transport</td>
* </tr>
* <tr>
* <td><b>Relevant Standards:</b></td>
* <td>USBIF Mass Storage Standard</td>
* <td>USB Bulk-Only Transport Standard</td>
* <td>SCSI Primary Commands Specification</td>
* <td>SCSI Block Commands Specification</td>
* </tr>
* <tr>
* <td><b>Usable Speeds:</b></td>
* <td>Full Speed Mode</td>
* </tr>
* </table>
*
* \section SSec_Description Project Description:
*
* Dual LUN Mass Storage demonstration application. This gives a simple
* reference application for implementing a multiple LUN USB Mass Storage
* device using the basic USB UFI drivers in all modern OSes (i.e. no
* special drivers required).
*
* On startup the system will automatically enumerate and function as an
* external mass storage device with two LUNs (seperate disks) which may
* be formatted and used in the same manner as commercial USB Mass Storage
* devices.
*
* You will need to format the mass storage drives upon first run of this
* demonstration - as the device acts only as a data block transport between
* the host and the storage media, it does not matter what file system is used,
* as the data interpretation is performed by the host and not the USB device.
*
* This demo is not restricted to only two LUNs; by changing the TOTAL_LUNS
* value in MassStorageDualLUN.h, any number of LUNs can be used (from 1 to
* 255), with each LUN being allocated an equal portion of the available
* Dataflash memory.
*
* \section SSec_Options Project Options
*
* The following defines can be found in this demo, which can control the demo behaviour when defined, or changed in value.
*
* <table>
* <tr>
* <td><b>Define Name:</b></td>
* <td><b>Location:</b></td>
* <td><b>Description:</b></td>
* </tr>
* <tr>
* <td>TOTAL_LUNS</td>
* <td>MassStorage.h</td>
* <td>Total number of Logical Units (drives) in the device. The total device capacity is shared equally between each drive
* - this can be set to any positive non-zero amount.</td>
* </tr>
* </table>
*/

View file

@ -0,0 +1,350 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* SCSI command processing routines, for SCSI commands issued by the host. Mass Storage
* devices use a thin "Bulk-Only Transport" protocol for issuing commands and status information,
* which wrap around standard SCSI device commands for controlling the actual storage medium.
*/
#define INCLUDE_FROM_SCSI_C
#include "SCSI.h"
/** Structure to hold the SCSI reponse data to a SCSI INQUIRY command. This gives information about the device's
* features and capabilities.
*/
SCSI_Inquiry_Response_t InquiryData =
{
DeviceType: 0,
PeripheralQualifier: 0,
Removable: true,
Version: 0,
ResponseDataFormat: 2,
NormACA: false,
TrmTsk: false,
AERC: false,
AdditionalLength: 0x1F,
SoftReset: false,
CmdQue: false,
Linked: false,
Sync: false,
WideBus16Bit: false,
WideBus32Bit: false,
RelAddr: false,
VendorID: "LUFA",
ProductID: "Dataflash Disk",
RevisionID: {'0','.','0','0'},
};
/** Structure to hold the sense data for the last issued SCSI command, which is returned to the host after a SCSI REQUEST SENSE
* command is issued. This gives information on exactly why the last command failed to complete.
*/
SCSI_Request_Sense_Response_t SenseData =
{
ResponseCode: 0x70,
AdditionalLength: 0x0A,
};
/** Main routine to process the SCSI command located in the Command Block Wrapper read from the host. This dispatches
* to the appropriate SCSI command handling routine if the issued command is supported by the device, else it returns
* a command failure due to a ILLEGAL REQUEST.
*/
void SCSI_DecodeSCSICommand(void)
{
bool CommandSuccess = false;
/* Run the apropriate SCSI command hander function based on the passed command */
switch (CommandBlock.SCSICommandData[0])
{
case SCSI_CMD_INQUIRY:
CommandSuccess = SCSI_Command_Inquiry();
break;
case SCSI_CMD_REQUEST_SENSE:
CommandSuccess = SCSI_Command_Request_Sense();
break;
case SCSI_CMD_READ_CAPACITY_10:
CommandSuccess = SCSI_Command_Read_Capacity_10();
break;
case SCSI_CMD_SEND_DIAGNOSTIC:
CommandSuccess = SCSI_Command_Send_Diagnostic();
break;
case SCSI_CMD_WRITE_10:
CommandSuccess = SCSI_Command_ReadWrite_10(DATA_WRITE);
break;
case SCSI_CMD_READ_10:
CommandSuccess = SCSI_Command_ReadWrite_10(DATA_READ);
break;
case SCSI_CMD_TEST_UNIT_READY:
case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL:
case SCSI_CMD_VERIFY_10:
/* These commands should just succeed, no handling required */
CommandSuccess = true;
CommandBlock.DataTransferLength = 0;
break;
default:
/* Update the SENSE key to reflect the invalid command */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_COMMAND,
SCSI_ASENSEQ_NO_QUALIFIER);
break;
}
/* Check if command was successfully processed */
if (CommandSuccess)
{
/* Command succeeded - set the CSW status and update the SENSE key */
CommandStatus.Status = Command_Pass;
SCSI_SET_SENSE(SCSI_SENSE_KEY_GOOD,
SCSI_ASENSE_NO_ADDITIONAL_INFORMATION,
SCSI_ASENSEQ_NO_QUALIFIER);
}
else
{
/* Command failed - set the CSW status - failed command function updates the SENSE key */
CommandStatus.Status = Command_Fail;
}
}
/** Command processing for an issued SCSI INQUIRY command. This command returns information about the device's features
* and capabilities to the host.
*
* \return Boolean true if the command completed successfully, false otherwise.
*/
static bool SCSI_Command_Inquiry(void)
{
uint16_t AllocationLength = (((uint16_t)CommandBlock.SCSICommandData[3] << 8) |
CommandBlock.SCSICommandData[4]);
uint16_t BytesTransferred = (AllocationLength < sizeof(InquiryData))? AllocationLength :
sizeof(InquiryData);
/* Only the standard INQUIRY data is supported, check if any optional INQUIRY bits set */
if ((CommandBlock.SCSICommandData[1] & ((1 << 0) | (1 << 1))) ||
CommandBlock.SCSICommandData[2])
{
/* Optional but unsupported bits set - update the SENSE key and fail the request */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_FIELD_IN_CDB,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Write the INQUIRY data to the endpoint */
Endpoint_Write_Stream_LE(&InquiryData, BytesTransferred, AbortOnMassStoreReset);
uint8_t PadBytes[AllocationLength - BytesTransferred];
/* Pad out remaining bytes with 0x00 */
Endpoint_Write_Stream_LE(&PadBytes, (AllocationLength - BytesTransferred), AbortOnMassStoreReset);
/* Finalize the stream transfer to send the last packet */
Endpoint_ClearCurrentBank();
/* Succeed the command and update the bytes transferred counter */
CommandBlock.DataTransferLength -= BytesTransferred;
return true;
}
/** Command processing for an issued SCSI REQUEST SENSE command. This command returns information about the last issued command,
* including the error code and additional error information so that the host can determine why a command failed to complete.
*
* \return Boolean true if the command completed successfully, false otherwise.
*/
static bool SCSI_Command_Request_Sense(void)
{
uint8_t AllocationLength = CommandBlock.SCSICommandData[4];
uint8_t BytesTransferred = (AllocationLength < sizeof(SenseData))? AllocationLength : sizeof(SenseData);
/* Send the SENSE data - this indicates to the host the status of the last command */
Endpoint_Write_Stream_LE(&SenseData, BytesTransferred, AbortOnMassStoreReset);
uint8_t PadBytes[AllocationLength - BytesTransferred];
/* Pad out remaining bytes with 0x00 */
Endpoint_Write_Stream_LE(&PadBytes, (AllocationLength - BytesTransferred), AbortOnMassStoreReset);
/* Finalize the stream transfer to send the last packet */
Endpoint_ClearCurrentBank();
/* Succeed the command and update the bytes transferred counter */
CommandBlock.DataTransferLength -= BytesTransferred;
return true;
}
/** Command processing for an issued SCSI READ CAPACITY (10) command. This command returns information about the device's capacity
* on the selected Logical Unit (drive), as a number of OS-sized blocks.
*
* \return Boolean true if the command completed successfully, false otherwise.
*/
static bool SCSI_Command_Read_Capacity_10(void)
{
/* Send the total number of logical blocks in the current LUN */
Endpoint_Write_DWord_BE(LUN_MEDIA_BLOCKS - 1);
/* Send the logical block size of the device (must be 512 bytes) */
Endpoint_Write_DWord_BE(VIRTUAL_MEMORY_BLOCK_SIZE);
/* Check if the current command is being aborted by the host */
if (IsMassStoreReset)
return false;
/* Send the endpoint data packet to the host */
Endpoint_ClearCurrentBank();
/* Succeed the command and update the bytes transferred counter */
CommandBlock.DataTransferLength -= 8;
return true;
}
/** Command processing for an issued SCSI SEND DIAGNOSTIC command. This command peforms a quick check of the Dataflash ICs on the
* board, and indicates if they are present and functioning correctly. Only the Self-Test portion of the diagnostic command is
* supported.
*
* \return Boolean true if the command completed successfully, false otherwise.
*/
static bool SCSI_Command_Send_Diagnostic(void)
{
uint8_t ReturnByte;
/* Check to see if the SELF TEST bit is not set */
if (!(CommandBlock.SCSICommandData[1] & (1 << 2)))
{
/* Only self-test supported - update SENSE key and fail the command */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_INVALID_FIELD_IN_CDB,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
/* Test first Dataflash IC is present and responding to commands */
Dataflash_SelectChip(DATAFLASH_CHIP1);
Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO);
ReturnByte = Dataflash_ReceiveByte();
Dataflash_DeselectChip();
/* If returned data is invalid, fail the command */
if (ReturnByte != DF_MANUFACTURER_ATMEL)
{
/* Update SENSE key with a hardware error condition and return command fail */
SCSI_SET_SENSE(SCSI_SENSE_KEY_HARDWARE_ERROR,
SCSI_ASENSE_NO_ADDITIONAL_INFORMATION,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
#if (DATAFLASH_TOTALCHIPS == 2)
/* Test second Dataflash IC is present and responding to commands */
Dataflash_SelectChip(DATAFLASH_CHIP2);
Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO);
ReturnByte = Dataflash_ReceiveByte();
Dataflash_DeselectChip();
/* If returned data is invalid, fail the command */
if (ReturnByte != DF_MANUFACTURER_ATMEL)
{
/* Update SENSE key with a hardware error condition and return command fail */
SCSI_SET_SENSE(SCSI_SENSE_KEY_HARDWARE_ERROR,
SCSI_ASENSE_NO_ADDITIONAL_INFORMATION,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
#endif
/* Succeed the command and update the bytes transferred counter */
CommandBlock.DataTransferLength = 0;
return true;
}
/** Command processing for an issued SCSI READ (10) or WRITE (10) command. This command reads in the block start address
* and total number of blocks to process, then calls the appropriate low-level dataflash routine to handle the actual
* reading and writing of the data.
*
* \param IsDataRead Indicates if the command is a READ (10) command or WRITE (10) command (DATA_READ or DATA_WRITE)
*
* \return Boolean true if the command completed successfully, false otherwise.
*/
static bool SCSI_Command_ReadWrite_10(const bool IsDataRead)
{
uint32_t BlockAddress;
uint16_t TotalBlocks;
/* Load in the 32-bit block address (SCSI uses big-endian, so have to do it byte-by-byte) */
((uint8_t*)&BlockAddress)[3] = CommandBlock.SCSICommandData[2];
((uint8_t*)&BlockAddress)[2] = CommandBlock.SCSICommandData[3];
((uint8_t*)&BlockAddress)[1] = CommandBlock.SCSICommandData[4];
((uint8_t*)&BlockAddress)[0] = CommandBlock.SCSICommandData[5];
/* Load in the 16-bit total blocks (SCSI uses big-endian, so have to do it byte-by-byte) */
((uint8_t*)&TotalBlocks)[1] = CommandBlock.SCSICommandData[7];
((uint8_t*)&TotalBlocks)[0] = CommandBlock.SCSICommandData[8];
/* Check if the block address is outside the maximum allowable value for the LUN */
if (BlockAddress >= LUN_MEDIA_BLOCKS)
{
/* Block address is invalid, update SENSE key and return command fail */
SCSI_SET_SENSE(SCSI_SENSE_KEY_ILLEGAL_REQUEST,
SCSI_ASENSE_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE,
SCSI_ASENSEQ_NO_QUALIFIER);
return false;
}
#if (TOTAL_LUNS > 1)
/* Adjust the given block address to the real media address based on the selected LUN */
BlockAddress += ((uint32_t)CommandBlock.LUN * LUN_MEDIA_BLOCKS);
#endif
/* Determine if the packet is a READ (10) or WRITE (10) command, call appropriate function */
if (IsDataRead == DATA_READ)
DataflashManager_ReadBlocks(BlockAddress, TotalBlocks);
else
DataflashManager_WriteBlocks(BlockAddress, TotalBlocks);
/* Update the bytes transferred counter and succeed the command */
CommandBlock.DataTransferLength -= ((uint32_t)TotalBlocks * VIRTUAL_MEMORY_BLOCK_SIZE);
return true;
}

View file

@ -0,0 +1,143 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for SCSI.c.
*/
#ifndef _SCSI_H_
#define _SCSI_H_
/* Includes: */
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <LUFA/Common/Common.h> // Function Attribute, Atomic, Debug and ISR Macros
#include <LUFA/Drivers/USB/USB.h> // USB Functionality
#include <LUFA/Drivers/Board/LEDs.h> // LEDs driver
#include "MassStorage.h"
#include "Descriptors.h"
#include "DataflashManager.h"
#include "SCSI_Codes.h"
/* Macros: */
/** Macro to set the current SCSI sense data to the given key, additional sense code and additional sense qualifier. This
* is for convenience, as it allows for all three sense values (returned upon request to the host to give information about
* the last command failure) in a quick and easy manner.
*
* \param key New SCSI sense key to set the sense code to
* \param acode New SCSI additional sense key to set the additional sense code to
* \param aqual New SCSI additional sense key qualifier to set the additional sense qualifier code to
*/
#define SCSI_SET_SENSE(key, acode, aqual) MACROS{ SenseData.SenseKey = key; \
SenseData.AdditionalSenseCode = acode; \
SenseData.AdditionalSenseQualifier = aqual; }MACROE
/** Macro for the SCSI_Command_ReadWrite_10() function, to indicate that data is to be read from the storage medium. */
#define DATA_READ true
/** Macro for the SCSI_Command_ReadWrite_10() function, to indicate that data is to be written to the storage medium. */
#define DATA_WRITE false
/* Type Defines: */
/** Type define for a SCSI response structure to a SCSI INQUIRY command. For details of the
* structure contents, refer to the SCSI specifications.
*/
typedef struct
{
unsigned int DeviceType : 5;
unsigned int PeripheralQualifier : 3;
unsigned int _RESERVED1 : 7;
unsigned int Removable : 1;
uint8_t Version;
unsigned int ResponseDataFormat : 4;
unsigned int _RESERVED2 : 1;
unsigned int NormACA : 1;
unsigned int TrmTsk : 1;
unsigned int AERC : 1;
uint8_t AdditionalLength;
uint8_t _RESERVED3[2];
unsigned int SoftReset : 1;
unsigned int CmdQue : 1;
unsigned int _RESERVED4 : 1;
unsigned int Linked : 1;
unsigned int Sync : 1;
unsigned int WideBus16Bit : 1;
unsigned int WideBus32Bit : 1;
unsigned int RelAddr : 1;
uint8_t VendorID[8];
uint8_t ProductID[16];
uint8_t RevisionID[4];
} SCSI_Inquiry_Response_t;
/** Type define for a SCSI sense structure to a SCSI REQUEST SENSE command. For details of the
* structure contents, refer to the SCSI specifications.
*/
typedef struct
{
uint8_t ResponseCode;
uint8_t SegmentNumber;
unsigned int SenseKey : 4;
unsigned int _RESERVED1 : 1;
unsigned int ILI : 1;
unsigned int EOM : 1;
unsigned int FileMark : 1;
uint8_t Information[4];
uint8_t AdditionalLength;
uint8_t CmdSpecificInformation[4];
uint8_t AdditionalSenseCode;
uint8_t AdditionalSenseQualifier;
uint8_t FieldReplaceableUnitCode;
uint8_t SenseKeySpecific[3];
} SCSI_Request_Sense_Response_t;
/* Function Prototypes: */
void SCSI_DecodeSCSICommand(void);
#if defined(INCLUDE_FROM_SCSI_C)
static bool SCSI_Command_Inquiry(void);
static bool SCSI_Command_Request_Sense(void);
static bool SCSI_Command_Read_Capacity_10(void);
static bool SCSI_Command_Send_Diagnostic(void);
static bool SCSI_Command_ReadWrite_10(const bool IsDataRead);
#endif
#endif

View file

@ -0,0 +1,85 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header containing macros for possible SCSI commands and SENSE data. Refer to
* the SCSI standard documentation for more information on each SCSI command and
* the SENSE data.
*/
#ifndef _SCSI_CODES_H_
#define _SCSI_CODES_H_
/* Macros: */
#define SCSI_CMD_INQUIRY 0x12
#define SCSI_CMD_REQUEST_SENSE 0x03
#define SCSI_CMD_TEST_UNIT_READY 0x00
#define SCSI_CMD_READ_CAPACITY_10 0x25
#define SCSI_CMD_SEND_DIAGNOSTIC 0x1D
#define SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL 0x1E
#define SCSI_CMD_WRITE_10 0x2A
#define SCSI_CMD_READ_10 0x28
#define SCSI_CMD_WRITE_6 0x0A
#define SCSI_CMD_READ_6 0x08
#define SCSI_CMD_VERIFY_10 0x2F
#define SCSI_CMD_MODE_SENSE_6 0x1A
#define SCSI_CMD_MODE_SENSE_10 0x5A
#define SCSI_SENSE_KEY_GOOD 0x00
#define SCSI_SENSE_KEY_RECOVERED_ERROR 0x01
#define SCSI_SENSE_KEY_NOT_READY 0x02
#define SCSI_SENSE_KEY_MEDIUM_ERROR 0x03
#define SCSI_SENSE_KEY_HARDWARE_ERROR 0x04
#define SCSI_SENSE_KEY_ILLEGAL_REQUEST 0x05
#define SCSI_SENSE_KEY_UNIT_ATTENTION 0x06
#define SCSI_SENSE_KEY_DATA_PROTECT 0x07
#define SCSI_SENSE_KEY_BLANK_CHECK 0x08
#define SCSI_SENSE_KEY_VENDOR_SPECIFIC 0x09
#define SCSI_SENSE_KEY_COPY_ABORTED 0x0A
#define SCSI_SENSE_KEY_ABORTED_COMMAND 0x0B
#define SCSI_SENSE_KEY_VOLUME_OVERFLOW 0x0D
#define SCSI_SENSE_KEY_MISCOMPARE 0x0E
#define SCSI_ASENSE_NO_ADDITIONAL_INFORMATION 0x00
#define SCSI_ASENSE_LOGICAL_UNIT_NOT_READY 0x04
#define SCSI_ASENSE_INVALID_FIELD_IN_CDB 0x24
#define SCSI_ASENSE_WRITE_PROTECTED 0x27
#define SCSI_ASENSE_FORMAT_ERROR 0x31
#define SCSI_ASENSE_INVALID_COMMAND 0x20
#define SCSI_ASENSE_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE 0x21
#define SCSI_ASENSE_MEDIUM_NOT_PRESENT 0x3A
#define SCSI_ASENSEQ_NO_QUALIFIER 0x00
#define SCSI_ASENSEQ_FORMAT_COMMAND_FAILED 0x01
#define SCSI_ASENSEQ_INITIALIZING_COMMAND_REQUIRED 0x02
#define SCSI_ASENSEQ_OPERATION_IN_PROGRESS 0x07
#endif

View file

@ -0,0 +1,731 @@
# Hey Emacs, this is a -*- makefile -*-
#----------------------------------------------------------------------------
# WinAVR Makefile Template written by Eric B. Weddington, Jörg Wunsch, et al.
# >> Modified for use with the LUFA project. <<
#
# Released to the Public Domain
#
# Additional material for this makefile was written by:
# Peter Fleury
# Tim Henigan
# Colin O'Flynn
# Reiner Patommel
# Markus Pfaff
# Sander Pool
# Frederik Rouleau
# Carlos Lamas
# Dean Camera
# Opendous Inc.
# Denver Gingerich
#
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device, using avrdude.
# Please customize the avrdude settings below first!
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make doxygen = Generate DoxyGen documentation for the project (must have
# DoxyGen installed)
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# MCU name
MCU = at90usb1287
# Target board (see library BoardTypes.h documentation, USER or blank for projects not requiring
# LUFA board drivers). If USER is selected, put custom board drivers in a directory called
# "Board" inside the application directory.
BOARD = USBKEY
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
# Typical values are:
# F_CPU = 1000000
# F_CPU = 1843200
# F_CPU = 2000000
# F_CPU = 3686400
# F_CPU = 4000000
# F_CPU = 7372800
# F_CPU = 8000000
# F_CPU = 11059200
# F_CPU = 14745600
# F_CPU = 16000000
# F_CPU = 18432000
# F_CPU = 20000000
F_CPU = 8000000
# Input clock frequency.
# This will define a symbol, F_CLOCK, in all source code files equal to the
# input clock frequency (before any prescaling is performed). This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_CLOCK = 8000000
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# Target file name (without extension).
TARGET = MassStorage
# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
OBJDIR = .
# Path to the LUFA library
LUFA_PATH = ../../..
# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c \
Descriptors.c \
SCSI.c \
DataflashManager.c \
$(LUFA_PATH)/LUFA/Scheduler/Scheduler.c \
$(LUFA_PATH)/LUFA/Drivers/USB/LowLevel/LowLevel.c \
$(LUFA_PATH)/LUFA/Drivers/USB/LowLevel/Endpoint.c \
$(LUFA_PATH)/LUFA/Drivers/USB/LowLevel/DevChapter9.c \
$(LUFA_PATH)/LUFA/Drivers/USB/HighLevel/USBTask.c \
$(LUFA_PATH)/LUFA/Drivers/USB/HighLevel/USBInterrupt.c \
$(LUFA_PATH)/LUFA/Drivers/USB/HighLevel/Events.c \
$(LUFA_PATH)/LUFA/Drivers/USB/HighLevel/StdDescriptors.c \
# List C++ source files here. (C dependencies are automatically generated.)
CPPSRC =
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =
# Optimization level, can be [0, 1, 2, 3, s].
# 0 = turn off optimization. s = optimize for size.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s
# Debugging format.
# Native formats for AVR-GCC's -g are dwarf-2 [default] or stabs.
# AVR Studio 4.10 requires dwarf-2.
# AVR [Extended] COFF format requires stabs, plus an avr-objcopy run.
DEBUG = dwarf-2
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS = $(LUFA_PATH)/
# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=gnu99
# Place -D or -U options here for C sources
CDEFS = -DF_CPU=$(F_CPU)UL -DF_CLOCK=$(F_CLOCK)UL -DBOARD=BOARD_$(BOARD)
CDEFS += -DUSE_NONSTANDARD_DESCRIPTOR_NAMES -DUSB_DEVICE_ONLY
CDEFS += -DUSE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
# Place -D or -U options here for ASM sources
ADEFS = -DF_CPU=$(F_CPU)
# Place -D or -U options here for C++ sources
CPPDEFS = -DF_CPU=$(F_CPU)UL
#CPPDEFS += -D__STDC_LIMIT_MACROS
#CPPDEFS += -D__STDC_CONSTANT_MACROS
#---------------- Compiler Options C ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CFLAGS = -g$(DEBUG)
CFLAGS += $(CDEFS)
CFLAGS += -O$(OPT)
CFLAGS += -funsigned-char
CFLAGS += -funsigned-bitfields
CFLAGS += -ffunction-sections
CFLAGS += -fpack-struct
CFLAGS += -fshort-enums
CFLAGS += -finline-limit=20
CFLAGS += -Wall
CFLAGS += -Wstrict-prototypes
CFLAGS += -Wundef
#CFLAGS += -fno-unit-at-a-time
#CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare
CFLAGS += -Wa,-adhlns=$(<:%.c=$(OBJDIR)/%.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD)
#---------------- Compiler Options C++ ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CPPFLAGS = -g$(DEBUG)
CPPFLAGS += $(CPPDEFS)
CPPFLAGS += -O$(OPT)
CPPFLAGS += -funsigned-char
CPPFLAGS += -funsigned-bitfields
CPPFLAGS += -fpack-struct
CPPFLAGS += -fshort-enums
CPPFLAGS += -fno-exceptions
CPPFLAGS += -Wall
CFLAGS += -Wundef
#CPPFLAGS += -mshort-calls
#CPPFLAGS += -fno-unit-at-a-time
#CPPFLAGS += -Wstrict-prototypes
#CPPFLAGS += -Wunreachable-code
#CPPFLAGS += -Wsign-compare
CPPFLAGS += -Wa,-adhlns=$(<:%.cpp=$(OBJDIR)/%.lst)
CPPFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
#CPPFLAGS += $(CSTANDARD)
#---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ASFLAGS = $(ADEFS) -Wa,-adhlns=$(<:%.S=$(OBJDIR)/%.lst),-gstabs,--listing-cont-lines=100
#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)
# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)
MATH_LIB = -lm
# List any extra directories to look for libraries here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRALIBDIRS =
#---------------- External Memory Options ----------------
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff
EXTMEMOPTS =
#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
LDFLAGS += -Wl,--relax
LDFLAGS += -Wl,--gc-sections
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#LDFLAGS += -T linker_script.x
#---------------- Programming Options (avrdude) ----------------
# Programming hardware: alf avr910 avrisp bascom bsd
# dt006 pavr picoweb pony-stk200 sp12 stk200 stk500
#
# Type: avrdude -c ?
# to get a full listing.
#
AVRDUDE_PROGRAMMER = jtagmkII
# com1 = serial port. Use lpt1 to connect to parallel port.
AVRDUDE_PORT = usb
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y
# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V
# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS += $(AVRDUDE_NO_VERIFY)
AVRDUDE_FLAGS += $(AVRDUDE_VERBOSE)
AVRDUDE_FLAGS += $(AVRDUDE_ERASE_COUNTER)
#---------------- Debugging Options ----------------
# For simulavr only - target MCU frequency.
DEBUG_MFREQ = $(F_CPU)
# Set the DEBUG_UI to either gdb or insight.
# DEBUG_UI = gdb
DEBUG_UI = insight
# Set the debugging back-end to either avarice, simulavr.
DEBUG_BACKEND = avarice
#DEBUG_BACKEND = simulavr
# GDB Init Filename.
GDBINIT_FILE = __avr_gdbinit
# When using avarice settings for the JTAG
JTAG_DEV = /dev/com1
# Debugging port used to communicate between GDB / avarice / simulavr.
DEBUG_PORT = 4242
# Debugging host used to communicate between GDB / avarice / simulavr, normally
# just set to localhost unless doing some sort of crazy debugging when
# avarice is running on a different computer.
DEBUG_HOST = localhost
#============================================================================
# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
AR = avr-ar rcs
NM = avr-nm
AVRDUDE = avrdude
REMOVE = rm -f
REMOVEDIR = rm -rf
COPY = cp
WINSHELL = cmd
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling C:
MSG_COMPILING_CPP = Compiling C++:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
# Define all object files.
OBJ = $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
# Define all listing files.
LST = $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
# Compiler flags to generate dependency files.
GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) $(GENDEPFLAGS)
ALL_CPPFLAGS = -mmcu=$(MCU) -I. -x c++ $(CPPFLAGS) $(GENDEPFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: begin gccversion sizebefore build checkhooks checklibmode checkboard sizeafter end
# Change the build target to build a HEX file or a library.
build: elf hex eep lss sym
#build: lib
elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym
LIBNAME=lib$(TARGET).a
lib: $(LIBNAME)
# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)
end:
@echo $(MSG_END)
@echo
# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) $(MCU_FLAG) $(FORMAT_FLAG) $(TARGET).elf
MCU_FLAG = $(shell $(SIZE) --help | grep -- --mcu > /dev/null && echo --mcu=$(MCU) )
FORMAT_FLAG = $(shell $(SIZE) --help | grep -- --format=.*avr > /dev/null && echo --format=avr )
sizebefore:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); \
2>/dev/null; echo; fi
sizeafter:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); \
2>/dev/null; echo; fi
checkhooks: build
@echo
@echo ------- Unhooked LUFA Events -------
@$(shell) (grep -s '^Event.*LUFA/.*\\.o' $(TARGET).map | \
cut -d' ' -f1 | cut -d'_' -f2- | grep ".*") || \
echo "(None)"
@echo ------------------------------------
checklibmode:
@echo
@echo ----------- Library Mode -----------
@$(shell) ($(CC) $(ALL_CFLAGS) -E -dM - < /dev/null \
| grep 'USB_\(DEVICE\|HOST\)_ONLY' | cut -d' ' -f2 | grep ".*") \
|| echo "No specific mode (both device and host mode allowable)."
@echo ------------------------------------
checkboard:
@echo
@echo ---------- Selected Board ----------
@echo Selected board model is $(BOARD).
@echo ------------------------------------
# Display compiler version information.
gccversion :
@$(CC) --version
# Program the device.
program: $(TARGET).hex $(TARGET).eep
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
flip: $(TARGET).hex
batchisp -hardware usb -device $(MCU) -operation erase f
batchisp -hardware usb -device $(MCU) -operation loadbuffer $(TARGET).hex program
batchisp -hardware usb -device $(MCU) -operation start reset 0
dfu: $(TARGET).hex
dfu-programmer $(MCU) erase
dfu-programmer $(MCU) flash --debug 1 $(TARGET).hex
dfu-programmer $(MCU) reset
flip-ee: $(TARGET).hex $(TARGET).eep
copy $(TARGET).eep $(TARGET)eep.hex
batchisp -hardware usb -device $(MCU) -operation memory EEPROM erase
batchisp -hardware usb -device $(MCU) -operation memory EEPROM loadbuffer $(TARGET)eep.hex program
batchisp -hardware usb -device $(MCU) -operation start reset 0
dfu-ee: $(TARGET).hex $(TARGET).eep
dfu-programmer $(MCU) flash-eeprom --debug 1 --suppress-bootloader-mem $(TARGET).eep
dfu-programmer $(MCU) reset
# Generate avr-gdb config/init file which does the following:
# define the reset signal, load the target file, connect to target, and set
# a breakpoint at main().
gdb-config:
@$(REMOVE) $(GDBINIT_FILE)
@echo define reset >> $(GDBINIT_FILE)
@echo SIGNAL SIGHUP >> $(GDBINIT_FILE)
@echo end >> $(GDBINIT_FILE)
@echo file $(TARGET).elf >> $(GDBINIT_FILE)
@echo target remote $(DEBUG_HOST):$(DEBUG_PORT) >> $(GDBINIT_FILE)
ifeq ($(DEBUG_BACKEND),simulavr)
@echo load >> $(GDBINIT_FILE)
endif
@echo break main >> $(GDBINIT_FILE)
debug: gdb-config $(TARGET).elf
ifeq ($(DEBUG_BACKEND), avarice)
@echo Starting AVaRICE - Press enter when "waiting to connect" message displays.
@$(WINSHELL) /c start avarice --jtag $(JTAG_DEV) --erase --program --file \
$(TARGET).elf $(DEBUG_HOST):$(DEBUG_PORT)
@$(WINSHELL) /c pause
else
@$(WINSHELL) /c start simulavr --gdbserver --device $(MCU) --clock-freq \
$(DEBUG_MFREQ) --port $(DEBUG_PORT)
endif
@$(WINSHELL) /c start avr-$(DEBUG_UI) --command=$(GDBINIT_FILE)
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT = $(OBJCOPY) --debugging
COFFCONVERT += --change-section-address .data-0x800000
COFFCONVERT += --change-section-address .bss-0x800000
COFFCONVERT += --change-section-address .noinit-0x800000
COFFCONVERT += --change-section-address .eeprom-0x810000
coff: $(TARGET).elf
@echo
@echo $(MSG_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-avr $< $(TARGET).cof
extcoff: $(TARGET).elf
@echo
@echo $(MSG_EXTENDED_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
@echo
@echo $(MSG_FLASH) $@
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
%.eep: %.elf
@echo
@echo $(MSG_EEPROM) $@
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 --no-change-warnings -O $(FORMAT) $< $@ || exit 0
# Create extended listing file from ELF output file.
%.lss: %.elf
@echo
@echo $(MSG_EXTENDED_LISTING) $@
$(OBJDUMP) -h -z -S $< > $@
# Create a symbol table from ELF output file.
%.sym: %.elf
@echo
@echo $(MSG_SYMBOL_TABLE) $@
$(NM) -n $< > $@
# Create library from object files.
.SECONDARY : $(TARGET).a
.PRECIOUS : $(OBJ)
%.a: $(OBJ)
@echo
@echo $(MSG_CREATING_LIBRARY) $@
$(AR) $@ $(OBJ)
# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo
@echo $(MSG_LINKING) $@
$(CC) $(ALL_CFLAGS) $^ --output $@ $(LDFLAGS)
# Compile: create object files from C source files.
$(OBJDIR)/%.o : %.c
@echo
@echo $(MSG_COMPILING) $<
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create object files from C++ source files.
$(OBJDIR)/%.o : %.cpp
@echo
@echo $(MSG_COMPILING_CPP) $<
$(CC) -c $(ALL_CPPFLAGS) $< -o $@
# Compile: create assembler files from C source files.
%.s : %.c
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C++ source files.
%.s : %.cpp
$(CC) -S $(ALL_CPPFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
$(OBJDIR)/%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Create preprocessed source for use in sending a bug report.
%.i : %.c
$(CC) -E -mmcu=$(MCU) -I. $(CFLAGS) $< -o $@
# Target: clean project.
clean: begin clean_list clean_binary end
clean_binary:
$(REMOVE) $(TARGET).hex
clean_list:
@echo $(MSG_CLEANING)
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET)eep.hex
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lss
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.o)
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.lst)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) $(SRC:.c=.i)
$(REMOVEDIR) .dep
doxygen:
@echo Generating Project Documentation...
@doxygen Doxygen.conf
@echo Documentation Generation Complete.
clean_doxygen:
rm -rf Documentation
# Create object files directory
$(shell mkdir $(OBJDIR) 2>/dev/null)
# Include the dependency files.
-include $(shell mkdir .dep 2>/dev/null) $(wildcard .dep/*)
# Listing of phony targets.
.PHONY : all checkhooks checklibmode checkboard \
begin finish end sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff clean \
clean_list clean_binary program debug gdb-config \
doxygen dfu flip flip-ee dfu-ee