Move Audio drivers from quantum to platform drivers folder (#14308)
* Move Audio drivers from quantum to platform drivers folder * fix path for audio drivers Co-authored-by: Ryan <fauxpark@gmail.com> Co-authored-by: Ryan <fauxpark@gmail.com>
This commit is contained in:
		
							parent
							
								
									9f0e74802a
								
							
						
					
					
						commit
						ba8f1454f4
					
				
					 10 changed files with 5 additions and 10 deletions
				
			
		| 
						 | 
				
			
			@ -26,17 +26,12 @@
 | 
			
		|||
 | 
			
		||||
#if defined(__AVR__)
 | 
			
		||||
#    include <avr/io.h>
 | 
			
		||||
#    if defined(AUDIO_DRIVER_PWM)
 | 
			
		||||
#        include "driver_avr_pwm.h"
 | 
			
		||||
#    endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(PROTOCOL_CHIBIOS)
 | 
			
		||||
#    if defined(AUDIO_DRIVER_PWM)
 | 
			
		||||
#        include "driver_chibios_pwm.h"
 | 
			
		||||
#    elif defined(AUDIO_DRIVER_DAC)
 | 
			
		||||
#        include "driver_chibios_dac.h"
 | 
			
		||||
#    endif
 | 
			
		||||
#if defined(AUDIO_DRIVER_PWM)
 | 
			
		||||
#    include "audio_pwm.h"
 | 
			
		||||
#elif defined(AUDIO_DRIVER_DAC)
 | 
			
		||||
#    include "audio_dac.h"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
typedef union {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,17 +0,0 @@
 | 
			
		|||
/* Copyright 2020 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
#pragma once
 | 
			
		||||
| 
						 | 
				
			
			@ -1,332 +0,0 @@
 | 
			
		|||
/* Copyright 2016 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#if defined(__AVR__)
 | 
			
		||||
#    include <avr/pgmspace.h>
 | 
			
		||||
#    include <avr/interrupt.h>
 | 
			
		||||
#    include <avr/io.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include "audio.h"
 | 
			
		||||
 | 
			
		||||
extern bool    playing_note;
 | 
			
		||||
extern bool    playing_melody;
 | 
			
		||||
extern uint8_t note_timbre;
 | 
			
		||||
 | 
			
		||||
#define CPU_PRESCALER 8
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Audio Driver: PWM
 | 
			
		||||
 | 
			
		||||
  drive up to two speakers through the AVR PWM hardware-peripheral, using timer1 and/or timer3 on Atmega32U4.
 | 
			
		||||
 | 
			
		||||
  the primary channel_1 can be connected to either pin PC4 PC5 or PC6 (the later being used by most AVR based keyboards) with a PMW signal generated by timer3
 | 
			
		||||
  and an optional secondary channel_2 on either pin PB5, PB6 or PB7, with a PWM signal from timer1
 | 
			
		||||
 | 
			
		||||
  alternatively, the PWM pins on PORTB can be used as only/primary speaker
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_PIN) && (AUDIO_PIN != C4) && (AUDIO_PIN != C5) && (AUDIO_PIN != C6) && (AUDIO_PIN != B5) && (AUDIO_PIN != B6) && (AUDIO_PIN != B7) && (AUDIO_PIN != D5)
 | 
			
		||||
#    error "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under the AVR settings for available options."
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if (AUDIO_PIN == C4) || (AUDIO_PIN == C5) || (AUDIO_PIN == C6)
 | 
			
		||||
#    define AUDIO1_PIN_SET
 | 
			
		||||
#    define AUDIO1_TIMSKx TIMSK3
 | 
			
		||||
#    define AUDIO1_TCCRxA TCCR3A
 | 
			
		||||
#    define AUDIO1_TCCRxB TCCR3B
 | 
			
		||||
#    define AUDIO1_ICRx ICR3
 | 
			
		||||
#    define AUDIO1_WGMx0 WGM30
 | 
			
		||||
#    define AUDIO1_WGMx1 WGM31
 | 
			
		||||
#    define AUDIO1_WGMx2 WGM32
 | 
			
		||||
#    define AUDIO1_WGMx3 WGM33
 | 
			
		||||
#    define AUDIO1_CSx0 CS30
 | 
			
		||||
#    define AUDIO1_CSx1 CS31
 | 
			
		||||
#    define AUDIO1_CSx2 CS32
 | 
			
		||||
 | 
			
		||||
#    if (AUDIO_PIN == C6)
 | 
			
		||||
#        define AUDIO1_COMxy0 COM3A0
 | 
			
		||||
#        define AUDIO1_COMxy1 COM3A1
 | 
			
		||||
#        define AUDIO1_OCIExy OCIE3A
 | 
			
		||||
#        define AUDIO1_OCRxy OCR3A
 | 
			
		||||
#        define AUDIO1_PIN C6
 | 
			
		||||
#        define AUDIO1_TIMERx_COMPy_vect TIMER3_COMPA_vect
 | 
			
		||||
#    elif (AUDIO_PIN == C5)
 | 
			
		||||
#        define AUDIO1_COMxy0 COM3B0
 | 
			
		||||
#        define AUDIO1_COMxy1 COM3B1
 | 
			
		||||
#        define AUDIO1_OCIExy OCIE3B
 | 
			
		||||
#        define AUDIO1_OCRxy OCR3B
 | 
			
		||||
#        define AUDIO1_PIN C5
 | 
			
		||||
#        define AUDIO1_TIMERx_COMPy_vect TIMER3_COMPB_vect
 | 
			
		||||
#    elif (AUDIO_PIN == C4)
 | 
			
		||||
#        define AUDIO1_COMxy0 COM3C0
 | 
			
		||||
#        define AUDIO1_COMxy1 COM3C1
 | 
			
		||||
#        define AUDIO1_OCIExy OCIE3C
 | 
			
		||||
#        define AUDIO1_OCRxy OCR3C
 | 
			
		||||
#        define AUDIO1_PIN C4
 | 
			
		||||
#        define AUDIO1_TIMERx_COMPy_vect TIMER3_COMPC_vect
 | 
			
		||||
#    endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_PIN) && defined(AUDIO_PIN_ALT) && (AUDIO_PIN == AUDIO_PIN_ALT)
 | 
			
		||||
#    error "Audio feature: AUDIO_PIN and AUDIO_PIN_ALT on the same pin makes no sense."
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if ((AUDIO_PIN == B5) && ((AUDIO_PIN_ALT == B6) || (AUDIO_PIN_ALT == B7))) || ((AUDIO_PIN == B6) && ((AUDIO_PIN_ALT == B5) || (AUDIO_PIN_ALT == B7))) || ((AUDIO_PIN == B7) && ((AUDIO_PIN_ALT == B5) || (AUDIO_PIN_ALT == B6)))
 | 
			
		||||
#    error "Audio feature: PORTB as AUDIO_PIN and AUDIO_PIN_ALT at the same time is not supported."
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_PIN_ALT) && (AUDIO_PIN_ALT != B5) && (AUDIO_PIN_ALT != B6) && (AUDIO_PIN_ALT != B7)
 | 
			
		||||
#    error "Audio feature: the pin selected as AUDIO_PIN_ALT is not supported."
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if (AUDIO_PIN == B5) || (AUDIO_PIN == B6) || (AUDIO_PIN == B7) || (AUDIO_PIN_ALT == B5) || (AUDIO_PIN_ALT == B6) || (AUDIO_PIN_ALT == B7) || (AUDIO_PIN == D5)
 | 
			
		||||
#    define AUDIO2_PIN_SET
 | 
			
		||||
#    define AUDIO2_TIMSKx TIMSK1
 | 
			
		||||
#    define AUDIO2_TCCRxA TCCR1A
 | 
			
		||||
#    define AUDIO2_TCCRxB TCCR1B
 | 
			
		||||
#    define AUDIO2_ICRx ICR1
 | 
			
		||||
#    define AUDIO2_WGMx0 WGM10
 | 
			
		||||
#    define AUDIO2_WGMx1 WGM11
 | 
			
		||||
#    define AUDIO2_WGMx2 WGM12
 | 
			
		||||
#    define AUDIO2_WGMx3 WGM13
 | 
			
		||||
#    define AUDIO2_CSx0 CS10
 | 
			
		||||
#    define AUDIO2_CSx1 CS11
 | 
			
		||||
#    define AUDIO2_CSx2 CS12
 | 
			
		||||
 | 
			
		||||
#    if (AUDIO_PIN == B5) || (AUDIO_PIN_ALT == B5)
 | 
			
		||||
#        define AUDIO2_COMxy0 COM1A0
 | 
			
		||||
#        define AUDIO2_COMxy1 COM1A1
 | 
			
		||||
#        define AUDIO2_OCIExy OCIE1A
 | 
			
		||||
#        define AUDIO2_OCRxy OCR1A
 | 
			
		||||
#        define AUDIO2_PIN B5
 | 
			
		||||
#        define AUDIO2_TIMERx_COMPy_vect TIMER1_COMPA_vect
 | 
			
		||||
#    elif (AUDIO_PIN == B6) || (AUDIO_PIN_ALT == B6)
 | 
			
		||||
#        define AUDIO2_COMxy0 COM1B0
 | 
			
		||||
#        define AUDIO2_COMxy1 COM1B1
 | 
			
		||||
#        define AUDIO2_OCIExy OCIE1B
 | 
			
		||||
#        define AUDIO2_OCRxy OCR1B
 | 
			
		||||
#        define AUDIO2_PIN B6
 | 
			
		||||
#        define AUDIO2_TIMERx_COMPy_vect TIMER1_COMPB_vect
 | 
			
		||||
#    elif (AUDIO_PIN == B7) || (AUDIO_PIN_ALT == B7)
 | 
			
		||||
#        define AUDIO2_COMxy0 COM1C0
 | 
			
		||||
#        define AUDIO2_COMxy1 COM1C1
 | 
			
		||||
#        define AUDIO2_OCIExy OCIE1C
 | 
			
		||||
#        define AUDIO2_OCRxy OCR1C
 | 
			
		||||
#        define AUDIO2_PIN B7
 | 
			
		||||
#        define AUDIO2_TIMERx_COMPy_vect TIMER1_COMPC_vect
 | 
			
		||||
#    elif (AUDIO_PIN == D5) && defined(__AVR_ATmega32A__)
 | 
			
		||||
#        pragma message "Audio support for ATmega32A is experimental and can cause crashes."
 | 
			
		||||
#        undef AUDIO2_TIMSKx
 | 
			
		||||
#        define AUDIO2_TIMSKx TIMSK
 | 
			
		||||
#        define AUDIO2_COMxy0 COM1A0
 | 
			
		||||
#        define AUDIO2_COMxy1 COM1A1
 | 
			
		||||
#        define AUDIO2_OCIExy OCIE1A
 | 
			
		||||
#        define AUDIO2_OCRxy OCR1A
 | 
			
		||||
#        define AUDIO2_PIN D5
 | 
			
		||||
#        define AUDIO2_TIMERx_COMPy_vect TIMER1_COMPA_vect
 | 
			
		||||
#    endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// C6 seems to be the assumed default by many existing keyboard - but sill warn the user
 | 
			
		||||
#if !defined(AUDIO1_PIN_SET) && !defined(AUDIO2_PIN_SET)
 | 
			
		||||
#    pragma message "Audio feature enabled, but no suitable pin selected - see docs/feature_audio under the AVR settings for available options. Don't expect to hear anything... :-)"
 | 
			
		||||
// TODO: make this an error - go through the breaking-change-process and change all keyboards to the new define
 | 
			
		||||
#endif
 | 
			
		||||
// -----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO1_PIN_SET
 | 
			
		||||
static float channel_1_frequency = 0.0f;
 | 
			
		||||
void         channel_1_set_frequency(float freq) {
 | 
			
		||||
    if (freq == 0.0f)  // a pause/rest is a valid "note" with freq=0
 | 
			
		||||
    {
 | 
			
		||||
        // disable the output, but keep the pwm-ISR going (with the previous
 | 
			
		||||
        // frequency) so the audio-state keeps getting updated
 | 
			
		||||
        // Note: setting the duty-cycle 0 is not possible on non-inverting PWM mode - see the AVR data-sheet
 | 
			
		||||
        AUDIO1_TCCRxA &= ~(_BV(AUDIO1_COMxy1) | _BV(AUDIO1_COMxy0));
 | 
			
		||||
        return;
 | 
			
		||||
    } else {
 | 
			
		||||
        AUDIO1_TCCRxA |= _BV(AUDIO1_COMxy1);  // enable output, PWM mode
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    channel_1_frequency = freq;
 | 
			
		||||
 | 
			
		||||
    // set pwm period
 | 
			
		||||
    AUDIO1_ICRx = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
 | 
			
		||||
    // and duty cycle
 | 
			
		||||
    AUDIO1_OCRxy = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre / 100);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_1_start(void) {
 | 
			
		||||
    // enable timer-counter ISR
 | 
			
		||||
    AUDIO1_TIMSKx |= _BV(AUDIO1_OCIExy);
 | 
			
		||||
    // enable timer-counter output
 | 
			
		||||
    AUDIO1_TCCRxA |= _BV(AUDIO1_COMxy1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_1_stop(void) {
 | 
			
		||||
    // disable timer-counter ISR
 | 
			
		||||
    AUDIO1_TIMSKx &= ~_BV(AUDIO1_OCIExy);
 | 
			
		||||
    // disable timer-counter output
 | 
			
		||||
    AUDIO1_TCCRxA &= ~(_BV(AUDIO1_COMxy1) | _BV(AUDIO1_COMxy0));
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO2_PIN_SET
 | 
			
		||||
static float channel_2_frequency = 0.0f;
 | 
			
		||||
void         channel_2_set_frequency(float freq) {
 | 
			
		||||
    if (freq == 0.0f) {
 | 
			
		||||
        AUDIO2_TCCRxA &= ~(_BV(AUDIO2_COMxy1) | _BV(AUDIO2_COMxy0));
 | 
			
		||||
        return;
 | 
			
		||||
    } else {
 | 
			
		||||
        AUDIO2_TCCRxA |= _BV(AUDIO2_COMxy1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    channel_2_frequency = freq;
 | 
			
		||||
 | 
			
		||||
    AUDIO2_ICRx  = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
 | 
			
		||||
    AUDIO2_OCRxy = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre / 100);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float channel_2_get_frequency(void) { return channel_2_frequency; }
 | 
			
		||||
 | 
			
		||||
void channel_2_start(void) {
 | 
			
		||||
    AUDIO2_TIMSKx |= _BV(AUDIO2_OCIExy);
 | 
			
		||||
    AUDIO2_TCCRxA |= _BV(AUDIO2_COMxy1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_2_stop(void) {
 | 
			
		||||
    AUDIO2_TIMSKx &= ~_BV(AUDIO2_OCIExy);
 | 
			
		||||
    AUDIO2_TCCRxA &= ~(_BV(AUDIO2_COMxy1) | _BV(AUDIO2_COMxy0));
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void audio_driver_initialize() {
 | 
			
		||||
#ifdef AUDIO1_PIN_SET
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
    setPinOutput(AUDIO1_PIN);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO2_PIN_SET
 | 
			
		||||
    channel_2_stop();
 | 
			
		||||
    setPinOutput(AUDIO2_PIN);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    // TCCR3A / TCCR3B: Timer/Counter #3 Control Registers TCCR3A/TCCR3B, TCCR1A/TCCR1B
 | 
			
		||||
    // Compare Output Mode (COM3An and COM1An) = 0b00 = Normal port operation
 | 
			
		||||
    //   OC3A -- PC6
 | 
			
		||||
    //   OC3B -- PC5
 | 
			
		||||
    //   OC3C -- PC4
 | 
			
		||||
    //   OC1A -- PB5
 | 
			
		||||
    //   OC1B -- PB6
 | 
			
		||||
    //   OC1C -- PB7
 | 
			
		||||
 | 
			
		||||
    // Waveform Generation Mode (WGM3n) = 0b1110 = Fast PWM Mode 14. Period = ICR3, Duty Cycle OCR3A)
 | 
			
		||||
    //   OCR3A - PC6
 | 
			
		||||
    //   OCR3B - PC5
 | 
			
		||||
    //   OCR3C - PC4
 | 
			
		||||
    //   OCR1A - PB5
 | 
			
		||||
    //   OCR1B - PB6
 | 
			
		||||
    //   OCR1C - PB7
 | 
			
		||||
 | 
			
		||||
    // Clock Select (CS3n) = 0b010 = Clock / 8
 | 
			
		||||
#ifdef AUDIO1_PIN_SET
 | 
			
		||||
    // initialize timer-counter
 | 
			
		||||
    AUDIO1_TCCRxA = (0 << AUDIO1_COMxy1) | (0 << AUDIO1_COMxy0) | (1 << AUDIO1_WGMx1) | (0 << AUDIO1_WGMx0);
 | 
			
		||||
    AUDIO1_TCCRxB = (1 << AUDIO1_WGMx3) | (1 << AUDIO1_WGMx2) | (0 << AUDIO1_CSx2) | (1 << AUDIO1_CSx1) | (0 << AUDIO1_CSx0);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO2_PIN_SET
 | 
			
		||||
    AUDIO2_TCCRxA = (0 << AUDIO2_COMxy1) | (0 << AUDIO2_COMxy0) | (1 << AUDIO2_WGMx1) | (0 << AUDIO2_WGMx0);
 | 
			
		||||
    AUDIO2_TCCRxB = (1 << AUDIO2_WGMx3) | (1 << AUDIO2_WGMx2) | (0 << AUDIO2_CSx2) | (1 << AUDIO2_CSx1) | (0 << AUDIO2_CSx0);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_stop() {
 | 
			
		||||
#ifdef AUDIO1_PIN_SET
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO2_PIN_SET
 | 
			
		||||
    channel_2_stop();
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_start(void) {
 | 
			
		||||
#ifdef AUDIO1_PIN_SET
 | 
			
		||||
    channel_1_start();
 | 
			
		||||
    if (playing_note) {
 | 
			
		||||
        channel_1_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO1_PIN_SET) && defined(AUDIO2_PIN_SET)
 | 
			
		||||
    channel_2_start();
 | 
			
		||||
    if (playing_note) {
 | 
			
		||||
        channel_2_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static volatile uint32_t isr_counter = 0;
 | 
			
		||||
#ifdef AUDIO1_PIN_SET
 | 
			
		||||
ISR(AUDIO1_TIMERx_COMPy_vect) {
 | 
			
		||||
    isr_counter++;
 | 
			
		||||
    if (isr_counter < channel_1_frequency / (CPU_PRESCALER * 8)) return;
 | 
			
		||||
 | 
			
		||||
    isr_counter        = 0;
 | 
			
		||||
    bool state_changed = audio_update_state();
 | 
			
		||||
 | 
			
		||||
    if (!playing_note && !playing_melody) {
 | 
			
		||||
        channel_1_stop();
 | 
			
		||||
#    ifdef AUDIO2_PIN_SET
 | 
			
		||||
        channel_2_stop();
 | 
			
		||||
#    endif
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (state_changed) {
 | 
			
		||||
        channel_1_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
#    ifdef AUDIO2_PIN_SET
 | 
			
		||||
        if (audio_get_number_of_active_tones() > 1) {
 | 
			
		||||
            channel_2_set_frequency(audio_get_processed_frequency(1));
 | 
			
		||||
        } else {
 | 
			
		||||
            channel_2_stop();
 | 
			
		||||
        }
 | 
			
		||||
#    endif
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO1_PIN_SET) && defined(AUDIO2_PIN_SET)
 | 
			
		||||
ISR(AUDIO2_TIMERx_COMPy_vect) {
 | 
			
		||||
    isr_counter++;
 | 
			
		||||
    if (isr_counter < channel_2_frequency / (CPU_PRESCALER * 8)) return;
 | 
			
		||||
 | 
			
		||||
    isr_counter        = 0;
 | 
			
		||||
    bool state_changed = audio_update_state();
 | 
			
		||||
 | 
			
		||||
    if (!playing_note && !playing_melody) {
 | 
			
		||||
        channel_2_stop();
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (state_changed) {
 | 
			
		||||
        channel_2_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
| 
						 | 
				
			
			@ -1,126 +0,0 @@
 | 
			
		|||
/* Copyright 2019 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#ifndef A4
 | 
			
		||||
#    define A4 PAL_LINE(GPIOA, 4)
 | 
			
		||||
#endif
 | 
			
		||||
#ifndef A5
 | 
			
		||||
#    define A5 PAL_LINE(GPIOA, 5)
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Size of the dac_buffer arrays. All must be the same size.
 | 
			
		||||
 */
 | 
			
		||||
#define AUDIO_DAC_BUFFER_SIZE 256U
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Highest value allowed sample value.
 | 
			
		||||
 | 
			
		||||
 * since the DAC is limited to 12 bit, the absolute max is 0xfff = 4095U;
 | 
			
		||||
 * lower values adjust the peak-voltage aka volume down.
 | 
			
		||||
 * adjusting this value has only an effect on a sample-buffer whose values are
 | 
			
		||||
 * are NOT pregenerated - see square-wave
 | 
			
		||||
 */
 | 
			
		||||
#ifndef AUDIO_DAC_SAMPLE_MAX
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_MAX 4095U
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_DAC_SAMPLE_RATE) && !defined(AUDIO_MAX_SIMULTANEOUS_TONES) && !defined(AUDIO_DAC_QUALITY_VERY_LOW) && !defined(AUDIO_DAC_QUALITY_LOW) && !defined(AUDIO_DAC_QUALITY_HIGH) && !defined(AUDIO_DAC_QUALITY_VERY_HIGH)
 | 
			
		||||
#    define AUDIO_DAC_QUALITY_SANE_MINIMUM
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * These presets allow you to quickly switch between quality settings for
 | 
			
		||||
 * the DAC. The sample rate and maximum number of simultaneous tones roughly
 | 
			
		||||
 * has an inverse relationship - slightly higher sample rates may be possible.
 | 
			
		||||
 *
 | 
			
		||||
 * NOTE: a high sample-rate results in a higher cpu-load, which might lead to
 | 
			
		||||
 *       (audible) discontinuities and/or starve other processes of cpu-time
 | 
			
		||||
 *       (like RGB-led back-lighting, ...)
 | 
			
		||||
 */
 | 
			
		||||
#ifdef AUDIO_DAC_QUALITY_VERY_LOW
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_RATE 11025U
 | 
			
		||||
#    define AUDIO_MAX_SIMULTANEOUS_TONES 8
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO_DAC_QUALITY_LOW
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_RATE 22050U
 | 
			
		||||
#    define AUDIO_MAX_SIMULTANEOUS_TONES 4
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO_DAC_QUALITY_HIGH
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_RATE 44100U
 | 
			
		||||
#    define AUDIO_MAX_SIMULTANEOUS_TONES 2
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO_DAC_QUALITY_VERY_HIGH
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_RATE 88200U
 | 
			
		||||
#    define AUDIO_MAX_SIMULTANEOUS_TONES 1
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO_DAC_QUALITY_SANE_MINIMUM
 | 
			
		||||
/* a sane-minimum config: with a trade-off between cpu-load and tone-range
 | 
			
		||||
 *
 | 
			
		||||
 * the (currently) highest defined note is NOTE_B8 with 7902Hz; if we now
 | 
			
		||||
 * aim for an even even multiple of the buffer-size, we end up with:
 | 
			
		||||
 * ( roundUptoPow2(highest note / AUDIO_DAC_BUFFER_SIZE) * nyquist-rate * AUDIO_DAC_BUFFER_SIZE)
 | 
			
		||||
 *                              7902/256 = 30.867        *       2      * 256 ~= 16384
 | 
			
		||||
 * which works out (but the 'scope shows some sampling artifacts with lower harmonics :-P)
 | 
			
		||||
 */
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_RATE 16384U
 | 
			
		||||
#    define AUDIO_MAX_SIMULTANEOUS_TONES 8
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Effective bit-rate of the DAC. 44.1khz is the standard for most audio - any
 | 
			
		||||
 * lower will sacrifice perceptible audio quality. Any higher will limit the
 | 
			
		||||
 * number of simultaneous tones. In most situations, a tenth (1/10) of the
 | 
			
		||||
 * sample rate is where notes become unbearable.
 | 
			
		||||
 */
 | 
			
		||||
#ifndef AUDIO_DAC_SAMPLE_RATE
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_RATE 44100U
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * The number of tones that can be played simultaneously. If too high a value
 | 
			
		||||
 * is used here, the keyboard will freeze and glitch-out when that many tones
 | 
			
		||||
 * are being played.
 | 
			
		||||
 */
 | 
			
		||||
#ifndef AUDIO_MAX_SIMULTANEOUS_TONES
 | 
			
		||||
#    define AUDIO_MAX_SIMULTANEOUS_TONES 2
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * The default value of the DAC when not playing anything. Certain hardware
 | 
			
		||||
 * setups may require a high (AUDIO_DAC_SAMPLE_MAX) or low (0) value here.
 | 
			
		||||
 * Since multiple added sine waves tend to oscillate around the midpoint,
 | 
			
		||||
 * and possibly never/rarely reach either 0 of MAX, 1/2 MAX can be a
 | 
			
		||||
 * reasonable default value.
 | 
			
		||||
 */
 | 
			
		||||
#ifndef AUDIO_DAC_OFF_VALUE
 | 
			
		||||
#    define AUDIO_DAC_OFF_VALUE AUDIO_DAC_SAMPLE_MAX / 2
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if AUDIO_DAC_OFF_VALUE > AUDIO_DAC_SAMPLE_MAX
 | 
			
		||||
#    error "AUDIO_DAC: OFF_VALUE may not be larger than SAMPLE_MAX"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *user overridable sample generation/processing
 | 
			
		||||
 */
 | 
			
		||||
uint16_t dac_value_generate(void);
 | 
			
		||||
| 
						 | 
				
			
			@ -1,335 +0,0 @@
 | 
			
		|||
/* Copyright 2016-2019 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "audio.h"
 | 
			
		||||
#include <ch.h>
 | 
			
		||||
#include <hal.h>
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Audio Driver: DAC
 | 
			
		||||
 | 
			
		||||
  which utilizes the dac unit many STM32 are equipped with, to output a modulated waveform from samples stored in the dac_buffer_* array who are passed to the hardware through DMA
 | 
			
		||||
 | 
			
		||||
  it is also possible to have a custom sample-LUT by implementing/overriding 'dac_value_generate'
 | 
			
		||||
 | 
			
		||||
  this driver allows for multiple simultaneous tones to be played through one single channel by doing additive wave-synthesis
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PIN)
 | 
			
		||||
#    error "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC additive)' for available options."
 | 
			
		||||
#endif
 | 
			
		||||
#if defined(AUDIO_PIN_ALT) && !defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
#    pragma message "Audio feature: AUDIO_PIN_ALT set, but not AUDIO_PIN_ALT_AS_NEGATIVE - pin will be left unused; audio might still work though."
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PIN_ALT)
 | 
			
		||||
// no ALT pin defined is valid, but the c-ifs below need some value set
 | 
			
		||||
#    define AUDIO_PIN_ALT PAL_NOLINE
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID)
 | 
			
		||||
#    define AUDIO_DAC_SAMPLE_WAVEFORM_SINE
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SINE
 | 
			
		||||
/* one full sine wave over [0,2*pi], but shifted up one amplitude and left pi/4; for the samples to start at 0
 | 
			
		||||
 */
 | 
			
		||||
static const dacsample_t dac_buffer_sine[AUDIO_DAC_BUFFER_SIZE] = {
 | 
			
		||||
    // 256 values, max 4095
 | 
			
		||||
    0x0,   0x1,   0x2,   0x6,   0xa,   0xf,   0x16,  0x1e,  0x27,  0x32,  0x3d,  0x4a,  0x58,  0x67,  0x78,  0x89,  0x9c,  0xb0,  0xc5,  0xdb,  0xf2,  0x10a, 0x123, 0x13e, 0x159, 0x175, 0x193, 0x1b1, 0x1d1, 0x1f1, 0x212, 0x235, 0x258, 0x27c, 0x2a0, 0x2c6, 0x2ed, 0x314, 0x33c, 0x365, 0x38e, 0x3b8, 0x3e3, 0x40e, 0x43a, 0x467, 0x494, 0x4c2, 0x4f0, 0x51f, 0x54e, 0x57d, 0x5ad, 0x5dd, 0x60e, 0x63f, 0x670, 0x6a1, 0x6d3, 0x705, 0x737, 0x769, 0x79b, 0x7cd, 0x800, 0x832, 0x864, 0x896, 0x8c8, 0x8fa, 0x92c, 0x95e, 0x98f, 0x9c0, 0x9f1, 0xa22, 0xa52, 0xa82, 0xab1, 0xae0, 0xb0f, 0xb3d, 0xb6b, 0xb98, 0xbc5, 0xbf1, 0xc1c, 0xc47, 0xc71, 0xc9a, 0xcc3, 0xceb, 0xd12, 0xd39, 0xd5f, 0xd83, 0xda7, 0xdca, 0xded, 0xe0e, 0xe2e, 0xe4e, 0xe6c, 0xe8a, 0xea6, 0xec1, 0xedc, 0xef5, 0xf0d, 0xf24, 0xf3a, 0xf4f, 0xf63, 0xf76, 0xf87, 0xf98, 0xfa7, 0xfb5, 0xfc2, 0xfcd, 0xfd8, 0xfe1, 0xfe9, 0xff0, 0xff5, 0xff9, 0xffd, 0xffe,
 | 
			
		||||
    0xfff, 0xffe, 0xffd, 0xff9, 0xff5, 0xff0, 0xfe9, 0xfe1, 0xfd8, 0xfcd, 0xfc2, 0xfb5, 0xfa7, 0xf98, 0xf87, 0xf76, 0xf63, 0xf4f, 0xf3a, 0xf24, 0xf0d, 0xef5, 0xedc, 0xec1, 0xea6, 0xe8a, 0xe6c, 0xe4e, 0xe2e, 0xe0e, 0xded, 0xdca, 0xda7, 0xd83, 0xd5f, 0xd39, 0xd12, 0xceb, 0xcc3, 0xc9a, 0xc71, 0xc47, 0xc1c, 0xbf1, 0xbc5, 0xb98, 0xb6b, 0xb3d, 0xb0f, 0xae0, 0xab1, 0xa82, 0xa52, 0xa22, 0x9f1, 0x9c0, 0x98f, 0x95e, 0x92c, 0x8fa, 0x8c8, 0x896, 0x864, 0x832, 0x800, 0x7cd, 0x79b, 0x769, 0x737, 0x705, 0x6d3, 0x6a1, 0x670, 0x63f, 0x60e, 0x5dd, 0x5ad, 0x57d, 0x54e, 0x51f, 0x4f0, 0x4c2, 0x494, 0x467, 0x43a, 0x40e, 0x3e3, 0x3b8, 0x38e, 0x365, 0x33c, 0x314, 0x2ed, 0x2c6, 0x2a0, 0x27c, 0x258, 0x235, 0x212, 0x1f1, 0x1d1, 0x1b1, 0x193, 0x175, 0x159, 0x13e, 0x123, 0x10a, 0xf2,  0xdb,  0xc5,  0xb0,  0x9c,  0x89,  0x78,  0x67,  0x58,  0x4a,  0x3d,  0x32,  0x27,  0x1e,  0x16,  0xf,   0xa,   0x6,   0x2,   0x1};
 | 
			
		||||
#endif  // AUDIO_DAC_SAMPLE_WAVEFORM_SINE
 | 
			
		||||
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
 | 
			
		||||
static const dacsample_t dac_buffer_triangle[AUDIO_DAC_BUFFER_SIZE] = {
 | 
			
		||||
    // 256 values, max 4095
 | 
			
		||||
    0x0,   0x20,  0x40,  0x60,  0x80,  0xa0,  0xc0,  0xe0,  0x100, 0x120, 0x140, 0x160, 0x180, 0x1a0, 0x1c0, 0x1e0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0x400, 0x420, 0x440, 0x460, 0x480, 0x4a0, 0x4c0, 0x4e0, 0x500, 0x520, 0x540, 0x560, 0x580, 0x5a0, 0x5c0, 0x5e0, 0x600, 0x620, 0x640, 0x660, 0x680, 0x6a0, 0x6c0, 0x6e0, 0x700, 0x720, 0x740, 0x760, 0x780, 0x7a0, 0x7c0, 0x7e0, 0x800, 0x81f, 0x83f, 0x85f, 0x87f, 0x89f, 0x8bf, 0x8df, 0x8ff, 0x91f, 0x93f, 0x95f, 0x97f, 0x99f, 0x9bf, 0x9df, 0x9ff, 0xa1f, 0xa3f, 0xa5f, 0xa7f, 0xa9f, 0xabf, 0xadf, 0xaff, 0xb1f, 0xb3f, 0xb5f, 0xb7f, 0xb9f, 0xbbf, 0xbdf, 0xbff, 0xc1f, 0xc3f, 0xc5f, 0xc7f, 0xc9f, 0xcbf, 0xcdf, 0xcff, 0xd1f, 0xd3f, 0xd5f, 0xd7f, 0xd9f, 0xdbf, 0xddf, 0xdff, 0xe1f, 0xe3f, 0xe5f, 0xe7f, 0xe9f, 0xebf, 0xedf, 0xeff, 0xf1f, 0xf3f, 0xf5f, 0xf7f, 0xf9f, 0xfbf, 0xfdf,
 | 
			
		||||
    0xfff, 0xfdf, 0xfbf, 0xf9f, 0xf7f, 0xf5f, 0xf3f, 0xf1f, 0xeff, 0xedf, 0xebf, 0xe9f, 0xe7f, 0xe5f, 0xe3f, 0xe1f, 0xdff, 0xddf, 0xdbf, 0xd9f, 0xd7f, 0xd5f, 0xd3f, 0xd1f, 0xcff, 0xcdf, 0xcbf, 0xc9f, 0xc7f, 0xc5f, 0xc3f, 0xc1f, 0xbff, 0xbdf, 0xbbf, 0xb9f, 0xb7f, 0xb5f, 0xb3f, 0xb1f, 0xaff, 0xadf, 0xabf, 0xa9f, 0xa7f, 0xa5f, 0xa3f, 0xa1f, 0x9ff, 0x9df, 0x9bf, 0x99f, 0x97f, 0x95f, 0x93f, 0x91f, 0x8ff, 0x8df, 0x8bf, 0x89f, 0x87f, 0x85f, 0x83f, 0x81f, 0x800, 0x7e0, 0x7c0, 0x7a0, 0x780, 0x760, 0x740, 0x720, 0x700, 0x6e0, 0x6c0, 0x6a0, 0x680, 0x660, 0x640, 0x620, 0x600, 0x5e0, 0x5c0, 0x5a0, 0x580, 0x560, 0x540, 0x520, 0x500, 0x4e0, 0x4c0, 0x4a0, 0x480, 0x460, 0x440, 0x420, 0x400, 0x3e0, 0x3c0, 0x3a0, 0x380, 0x360, 0x340, 0x320, 0x300, 0x2e0, 0x2c0, 0x2a0, 0x280, 0x260, 0x240, 0x220, 0x200, 0x1e0, 0x1c0, 0x1a0, 0x180, 0x160, 0x140, 0x120, 0x100, 0xe0,  0xc0,  0xa0,  0x80,  0x60,  0x40,  0x20};
 | 
			
		||||
#endif  // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
 | 
			
		||||
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
 | 
			
		||||
static const dacsample_t dac_buffer_square[AUDIO_DAC_BUFFER_SIZE] = {
 | 
			
		||||
    [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = 0,                     // first and
 | 
			
		||||
    [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX,  // second half
 | 
			
		||||
};
 | 
			
		||||
#endif  // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
 | 
			
		||||
/*
 | 
			
		||||
// four steps: 0, 1/3, 2/3 and 1
 | 
			
		||||
static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = {
 | 
			
		||||
    [0 ... AUDIO_DAC_BUFFER_SIZE/3 -1 ]                               = 0,
 | 
			
		||||
    [AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE / 2 -1 ]     = AUDIO_DAC_SAMPLE_MAX / 3,
 | 
			
		||||
    [AUDIO_DAC_BUFFER_SIZE / 2 ... 3 * AUDIO_DAC_BUFFER_SIZE / 4 -1 ] = 2 * AUDIO_DAC_SAMPLE_MAX / 3,
 | 
			
		||||
    [3 * AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE -1 ]     = AUDIO_DAC_SAMPLE_MAX,
 | 
			
		||||
}
 | 
			
		||||
*/
 | 
			
		||||
#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
 | 
			
		||||
static const dacsample_t dac_buffer_trapezoid[AUDIO_DAC_BUFFER_SIZE] = {0x0,   0x1f,  0x7f,  0xdf,  0x13f, 0x19f, 0x1ff, 0x25f, 0x2bf, 0x31f, 0x37f, 0x3df, 0x43f, 0x49f, 0x4ff, 0x55f, 0x5bf, 0x61f, 0x67f, 0x6df, 0x73f, 0x79f, 0x7ff, 0x85f, 0x8bf, 0x91f, 0x97f, 0x9df, 0xa3f, 0xa9f, 0xaff, 0xb5f, 0xbbf, 0xc1f, 0xc7f, 0xcdf, 0xd3f, 0xd9f, 0xdff, 0xe5f, 0xebf, 0xf1f, 0xf7f, 0xfdf, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,
 | 
			
		||||
                                                                        0xfff, 0xfdf, 0xf7f, 0xf1f, 0xebf, 0xe5f, 0xdff, 0xd9f, 0xd3f, 0xcdf, 0xc7f, 0xc1f, 0xbbf, 0xb5f, 0xaff, 0xa9f, 0xa3f, 0x9df, 0x97f, 0x91f, 0x8bf, 0x85f, 0x7ff, 0x79f, 0x73f, 0x6df, 0x67f, 0x61f, 0x5bf, 0x55f, 0x4ff, 0x49f, 0x43f, 0x3df, 0x37f, 0x31f, 0x2bf, 0x25f, 0x1ff, 0x19f, 0x13f, 0xdf,  0x7f,  0x1f,  0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0,   0x0};
 | 
			
		||||
#endif  // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
 | 
			
		||||
 | 
			
		||||
static dacsample_t dac_buffer_empty[AUDIO_DAC_BUFFER_SIZE] = {AUDIO_DAC_OFF_VALUE};
 | 
			
		||||
 | 
			
		||||
/* keep track of the sample position for for each frequency */
 | 
			
		||||
static float dac_if[AUDIO_MAX_SIMULTANEOUS_TONES] = {0.0};
 | 
			
		||||
 | 
			
		||||
static float   active_tones_snapshot[AUDIO_MAX_SIMULTANEOUS_TONES] = {0, 0};
 | 
			
		||||
static uint8_t active_tones_snapshot_length                        = 0;
 | 
			
		||||
 | 
			
		||||
typedef enum {
 | 
			
		||||
    OUTPUT_SHOULD_START,
 | 
			
		||||
    OUTPUT_RUN_NORMALLY,
 | 
			
		||||
    // path 1: wait for zero, then change/update active tones
 | 
			
		||||
    OUTPUT_TONES_CHANGED,
 | 
			
		||||
    OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE,
 | 
			
		||||
    // path 2: hardware should stop, wait for zero then turn output off = stop the timer
 | 
			
		||||
    OUTPUT_SHOULD_STOP,
 | 
			
		||||
    OUTPUT_REACHED_ZERO_BEFORE_OFF,
 | 
			
		||||
    OUTPUT_OFF,
 | 
			
		||||
    OUTPUT_OFF_1,
 | 
			
		||||
    OUTPUT_OFF_2,  // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level
 | 
			
		||||
    number_of_output_states
 | 
			
		||||
} output_states_t;
 | 
			
		||||
output_states_t state = OUTPUT_OFF_2;
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Generation of the waveform being passed to the callback. Declared weak so users
 | 
			
		||||
 * can override it with their own wave-forms/noises.
 | 
			
		||||
 */
 | 
			
		||||
__attribute__((weak)) uint16_t dac_value_generate(void) {
 | 
			
		||||
    // DAC is running/asking for values but snapshot length is zero -> must be playing a pause
 | 
			
		||||
    if (active_tones_snapshot_length == 0) {
 | 
			
		||||
        return AUDIO_DAC_OFF_VALUE;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* doing additive wave synthesis over all currently playing tones = adding up
 | 
			
		||||
     * sine-wave-samples for each frequency, scaled by the number of active tones
 | 
			
		||||
     */
 | 
			
		||||
    uint16_t value     = 0;
 | 
			
		||||
    float    frequency = 0.0f;
 | 
			
		||||
 | 
			
		||||
    for (uint8_t i = 0; i < active_tones_snapshot_length; i++) {
 | 
			
		||||
        /* Note: a user implementation does not have to rely on the active_tones_snapshot, but
 | 
			
		||||
         * could directly query the active frequencies through audio_get_processed_frequency */
 | 
			
		||||
        frequency = active_tones_snapshot[i];
 | 
			
		||||
 | 
			
		||||
        dac_if[i] = dac_if[i] + ((frequency * AUDIO_DAC_BUFFER_SIZE) / AUDIO_DAC_SAMPLE_RATE) * 2 / 3;
 | 
			
		||||
        /*Note: the 2/3 are necessary to get the correct frequencies on the
 | 
			
		||||
         *      DAC output (as measured with an oscilloscope), since the gpt
 | 
			
		||||
         *      timer runs with 3*AUDIO_DAC_SAMPLE_RATE; and the DAC callback
 | 
			
		||||
         *      is called twice per conversion.*/
 | 
			
		||||
 | 
			
		||||
        dac_if[i] = fmod(dac_if[i], AUDIO_DAC_BUFFER_SIZE);
 | 
			
		||||
 | 
			
		||||
        // Wavetable generation/lookup
 | 
			
		||||
        uint16_t dac_i = (uint16_t)dac_if[i];
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE)
 | 
			
		||||
        value += dac_buffer_sine[dac_i] / active_tones_snapshot_length;
 | 
			
		||||
#elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE)
 | 
			
		||||
        value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length;
 | 
			
		||||
#elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID)
 | 
			
		||||
        value += dac_buffer_trapezoid[dac_i] / active_tones_snapshot_length;
 | 
			
		||||
#elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE)
 | 
			
		||||
        value += dac_buffer_square[dac_i] / active_tones_snapshot_length;
 | 
			
		||||
#endif
 | 
			
		||||
        /*
 | 
			
		||||
        // SINE
 | 
			
		||||
        value += dac_buffer_sine[dac_i] / active_tones_snapshot_length / 3;
 | 
			
		||||
        // TRIANGLE
 | 
			
		||||
        value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length / 3;
 | 
			
		||||
        // SQUARE
 | 
			
		||||
        value += dac_buffer_square[dac_i] / active_tones_snapshot_length / 3;
 | 
			
		||||
        //NOTE: combination of these three wave-forms is more exemplary - and doesn't sound particularly good :-P
 | 
			
		||||
        */
 | 
			
		||||
 | 
			
		||||
        // STAIRS (mostly usefully as test-pattern)
 | 
			
		||||
        // value_avg = dac_buffer_staircase[dac_i] / active_tones_snapshot_length;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return value;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * DAC streaming callback. Does all of the main computing for playing songs.
 | 
			
		||||
 *
 | 
			
		||||
 * Note: chibios calls this CB twice: during the 'half buffer event', and the 'full buffer event'.
 | 
			
		||||
 */
 | 
			
		||||
static void dac_end(DACDriver *dacp) {
 | 
			
		||||
    dacsample_t *sample_p = (dacp)->samples;
 | 
			
		||||
 | 
			
		||||
    // work on the other half of the buffer
 | 
			
		||||
    if (dacIsBufferComplete(dacp)) {
 | 
			
		||||
        sample_p += AUDIO_DAC_BUFFER_SIZE / 2;  // 'half_index'
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (uint8_t s = 0; s < AUDIO_DAC_BUFFER_SIZE / 2; s++) {
 | 
			
		||||
        if (OUTPUT_OFF <= state) {
 | 
			
		||||
            sample_p[s] = AUDIO_DAC_OFF_VALUE;
 | 
			
		||||
            continue;
 | 
			
		||||
        } else {
 | 
			
		||||
            sample_p[s] = dac_value_generate();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /* zero crossing (or approach, whereas zero == DAC_OFF_VALUE, which can be configured to anything from 0 to DAC_SAMPLE_MAX)
 | 
			
		||||
         * ============================*=*========================== AUDIO_DAC_SAMPLE_MAX
 | 
			
		||||
         *                          *       *
 | 
			
		||||
         *                        *           *
 | 
			
		||||
         * ---------------------------------------------------------
 | 
			
		||||
         *                     *                 *                  } AUDIO_DAC_SAMPLE_MAX/100
 | 
			
		||||
         * --------------------------------------------------------- AUDIO_DAC_OFF_VALUE
 | 
			
		||||
         *                  *                       *               } AUDIO_DAC_SAMPLE_MAX/100
 | 
			
		||||
         * ---------------------------------------------------------
 | 
			
		||||
         *               *
 | 
			
		||||
         * *           *
 | 
			
		||||
         *   *       *
 | 
			
		||||
         * =====*=*================================================= 0x0
 | 
			
		||||
         */
 | 
			
		||||
        if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) &&  // value approaches from below
 | 
			
		||||
            (sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100)))     // or above
 | 
			
		||||
        ) {
 | 
			
		||||
            if ((OUTPUT_SHOULD_START == state) && (active_tones_snapshot_length > 0)) {
 | 
			
		||||
                state = OUTPUT_RUN_NORMALLY;
 | 
			
		||||
            } else if (OUTPUT_TONES_CHANGED == state) {
 | 
			
		||||
                state = OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE;
 | 
			
		||||
            } else if (OUTPUT_SHOULD_STOP == state) {
 | 
			
		||||
                state = OUTPUT_REACHED_ZERO_BEFORE_OFF;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // still 'ramping up', reset the output to OFF_VALUE until the generated values reach that value, to do a smooth handover
 | 
			
		||||
        if (OUTPUT_SHOULD_START == state) {
 | 
			
		||||
            sample_p[s] = AUDIO_DAC_OFF_VALUE;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if ((OUTPUT_SHOULD_START == state) || (OUTPUT_REACHED_ZERO_BEFORE_OFF == state) || (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state)) {
 | 
			
		||||
            uint8_t active_tones         = MIN(AUDIO_MAX_SIMULTANEOUS_TONES, audio_get_number_of_active_tones());
 | 
			
		||||
            active_tones_snapshot_length = 0;
 | 
			
		||||
            // update the snapshot - once, and only on occasion that something changed;
 | 
			
		||||
            // -> saves cpu cycles (?)
 | 
			
		||||
            for (uint8_t i = 0; i < active_tones; i++) {
 | 
			
		||||
                float freq = audio_get_processed_frequency(i);
 | 
			
		||||
                if (freq > 0) {  // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step
 | 
			
		||||
                    active_tones_snapshot[active_tones_snapshot_length++] = freq;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if ((0 == active_tones_snapshot_length) && (OUTPUT_REACHED_ZERO_BEFORE_OFF == state)) {
 | 
			
		||||
                state = OUTPUT_OFF;
 | 
			
		||||
            }
 | 
			
		||||
            if (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state) {
 | 
			
		||||
                state = OUTPUT_RUN_NORMALLY;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // update audio internal state (note position, current_note, ...)
 | 
			
		||||
    if (audio_update_state()) {
 | 
			
		||||
        if (OUTPUT_SHOULD_STOP != state) {
 | 
			
		||||
            state = OUTPUT_TONES_CHANGED;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (OUTPUT_OFF <= state) {
 | 
			
		||||
        if (OUTPUT_OFF_2 == state) {
 | 
			
		||||
            // stopping timer6 = stopping the DAC at whatever value it is currently pushing to the output = AUDIO_DAC_OFF_VALUE
 | 
			
		||||
            gptStopTimer(&GPTD6);
 | 
			
		||||
        } else {
 | 
			
		||||
            state++;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void dac_error(DACDriver *dacp, dacerror_t err) {
 | 
			
		||||
    (void)dacp;
 | 
			
		||||
    (void)err;
 | 
			
		||||
 | 
			
		||||
    chSysHalt("DAC failure. halp");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static const GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE * 3,
 | 
			
		||||
                                   .callback  = NULL,
 | 
			
		||||
                                   .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.  */
 | 
			
		||||
                                   .dier      = 0U};
 | 
			
		||||
 | 
			
		||||
static const DACConfig dac_conf = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
 | 
			
		||||
 * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
 | 
			
		||||
 * to be a third of what we expect.
 | 
			
		||||
 *
 | 
			
		||||
 * Here are all the values for DAC_TRG (TSEL in the ref manual)
 | 
			
		||||
 * TIM15_TRGO 0b011
 | 
			
		||||
 * TIM2_TRGO  0b100
 | 
			
		||||
 * TIM3_TRGO  0b001
 | 
			
		||||
 * TIM6_TRGO  0b000
 | 
			
		||||
 * TIM7_TRGO  0b010
 | 
			
		||||
 * EXTI9      0b110
 | 
			
		||||
 * SWTRIG     0b111
 | 
			
		||||
 */
 | 
			
		||||
static const DACConversionGroup dac_conv_cfg = {.num_channels = 1U, .end_cb = dac_end, .error_cb = dac_error, .trigger = DAC_TRG(0b000)};
 | 
			
		||||
 | 
			
		||||
void audio_driver_initialize() {
 | 
			
		||||
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
			
		||||
        palSetLineMode(A4, PAL_MODE_INPUT_ANALOG);
 | 
			
		||||
        dacStart(&DACD1, &dac_conf);
 | 
			
		||||
    }
 | 
			
		||||
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
			
		||||
        palSetLineMode(A5, PAL_MODE_INPUT_ANALOG);
 | 
			
		||||
        dacStart(&DACD2, &dac_conf);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* enable the output buffer, to directly drive external loads with no additional circuitry
 | 
			
		||||
     *
 | 
			
		||||
     * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
 | 
			
		||||
     * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
 | 
			
		||||
     * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
 | 
			
		||||
     *
 | 
			
		||||
     * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
 | 
			
		||||
     * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
 | 
			
		||||
     */
 | 
			
		||||
    DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
 | 
			
		||||
    DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
 | 
			
		||||
 | 
			
		||||
    if (AUDIO_PIN == A4) {
 | 
			
		||||
        dacStartConversion(&DACD1, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE);
 | 
			
		||||
    } else if (AUDIO_PIN == A5) {
 | 
			
		||||
        dacStartConversion(&DACD2, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // no inverted/out-of-phase waveform (yet?), only pulling AUDIO_PIN_ALT to AUDIO_DAC_OFF_VALUE
 | 
			
		||||
#if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
    if (AUDIO_PIN_ALT == A4) {
 | 
			
		||||
        dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
 | 
			
		||||
    } else if (AUDIO_PIN_ALT == A5) {
 | 
			
		||||
        dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    gptStart(&GPTD6, &gpt6cfg1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_stop(void) { state = OUTPUT_SHOULD_STOP; }
 | 
			
		||||
 | 
			
		||||
void audio_driver_start(void) {
 | 
			
		||||
    gptStartContinuous(&GPTD6, 2U);
 | 
			
		||||
 | 
			
		||||
    for (uint8_t i = 0; i < AUDIO_MAX_SIMULTANEOUS_TONES; i++) {
 | 
			
		||||
        dac_if[i]                = 0.0f;
 | 
			
		||||
        active_tones_snapshot[i] = 0.0f;
 | 
			
		||||
    }
 | 
			
		||||
    active_tones_snapshot_length = 0;
 | 
			
		||||
    state                        = OUTPUT_SHOULD_START;
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1,245 +0,0 @@
 | 
			
		|||
/* Copyright 2016-2020 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "audio.h"
 | 
			
		||||
#include "ch.h"
 | 
			
		||||
#include "hal.h"
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Audio Driver: DAC
 | 
			
		||||
 | 
			
		||||
  which utilizes both channels of the DAC unit many STM32 are equipped with to output a modulated square-wave, from precomputed samples stored in a buffer, which is passed to the hardware through DMA
 | 
			
		||||
 | 
			
		||||
  this driver can either be used to drive to separate speakers, wired to A4+Gnd and A5+Gnd, which allows two tones to be played simultaneously
 | 
			
		||||
  OR
 | 
			
		||||
  one speaker wired to A4+A5 with the AUDIO_PIN_ALT_AS_NEGATIVE define set - see docs/feature_audio
 | 
			
		||||
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PIN)
 | 
			
		||||
#    pragma message "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC basic)' for available options."
 | 
			
		||||
// TODO: make this an 'error' instead; go through a breaking change, and add AUDIO_PIN A5 to all keyboards currently using AUDIO on STM32 based boards? - for now: set the define here
 | 
			
		||||
#    define AUDIO_PIN A5
 | 
			
		||||
#endif
 | 
			
		||||
// check configuration for ONE speaker, connected to both DAC pins
 | 
			
		||||
#if defined(AUDIO_PIN_ALT_AS_NEGATIVE) && !defined(AUDIO_PIN_ALT)
 | 
			
		||||
#    error "Audio feature: AUDIO_PIN_ALT_AS_NEGATIVE set, but no pin configured as AUDIO_PIN_ALT"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef AUDIO_PIN_ALT
 | 
			
		||||
// no ALT pin defined is valid, but the c-ifs below need some value set
 | 
			
		||||
#    define AUDIO_PIN_ALT -1
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_STATE_TIMER)
 | 
			
		||||
#    define AUDIO_STATE_TIMER GPTD8
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// square-wave
 | 
			
		||||
static const dacsample_t dac_buffer_1[AUDIO_DAC_BUFFER_SIZE] = {
 | 
			
		||||
    // First half is max, second half is 0
 | 
			
		||||
    [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = AUDIO_DAC_SAMPLE_MAX,
 | 
			
		||||
    [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = 0,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// square-wave
 | 
			
		||||
static const dacsample_t dac_buffer_2[AUDIO_DAC_BUFFER_SIZE] = {
 | 
			
		||||
    // opposite of dac_buffer above
 | 
			
		||||
    [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = 0,
 | 
			
		||||
    [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
 | 
			
		||||
                      .callback  = NULL,
 | 
			
		||||
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | 
			
		||||
                      .dier      = 0U};
 | 
			
		||||
GPTConfig gpt7cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
 | 
			
		||||
                      .callback  = NULL,
 | 
			
		||||
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | 
			
		||||
                      .dier      = 0U};
 | 
			
		||||
 | 
			
		||||
static void gpt_audio_state_cb(GPTDriver *gptp);
 | 
			
		||||
GPTConfig   gptStateUpdateCfg = {.frequency = 10,
 | 
			
		||||
                               .callback  = gpt_audio_state_cb,
 | 
			
		||||
                               .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | 
			
		||||
                               .dier      = 0U};
 | 
			
		||||
 | 
			
		||||
static const DACConfig dac_conf_ch1 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | 
			
		||||
static const DACConfig dac_conf_ch2 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
 | 
			
		||||
 * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
 | 
			
		||||
 * to be a third of what we expect.
 | 
			
		||||
 *
 | 
			
		||||
 * Here are all the values for DAC_TRG (TSEL in the ref manual)
 | 
			
		||||
 * TIM15_TRGO 0b011
 | 
			
		||||
 * TIM2_TRGO  0b100
 | 
			
		||||
 * TIM3_TRGO  0b001
 | 
			
		||||
 * TIM6_TRGO  0b000
 | 
			
		||||
 * TIM7_TRGO  0b010
 | 
			
		||||
 * EXTI9      0b110
 | 
			
		||||
 * SWTRIG     0b111
 | 
			
		||||
 */
 | 
			
		||||
static const DACConversionGroup dac_conv_grp_ch1 = {.num_channels = 1U, .trigger = DAC_TRG(0b000)};
 | 
			
		||||
static const DACConversionGroup dac_conv_grp_ch2 = {.num_channels = 1U, .trigger = DAC_TRG(0b010)};
 | 
			
		||||
 | 
			
		||||
void channel_1_start(void) {
 | 
			
		||||
    gptStart(&GPTD6, &gpt6cfg1);
 | 
			
		||||
    gptStartContinuous(&GPTD6, 2U);
 | 
			
		||||
    palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_1_stop(void) {
 | 
			
		||||
    gptStopTimer(&GPTD6);
 | 
			
		||||
    palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL);
 | 
			
		||||
    palSetPad(GPIOA, 4);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static float channel_1_frequency = 0.0f;
 | 
			
		||||
void         channel_1_set_frequency(float freq) {
 | 
			
		||||
    channel_1_frequency = freq;
 | 
			
		||||
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
    if (freq <= 0.0)  // a pause/rest has freq=0
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    gpt6cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
 | 
			
		||||
    channel_1_start();
 | 
			
		||||
}
 | 
			
		||||
float channel_1_get_frequency(void) { return channel_1_frequency; }
 | 
			
		||||
 | 
			
		||||
void channel_2_start(void) {
 | 
			
		||||
    gptStart(&GPTD7, &gpt7cfg1);
 | 
			
		||||
    gptStartContinuous(&GPTD7, 2U);
 | 
			
		||||
    palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_2_stop(void) {
 | 
			
		||||
    gptStopTimer(&GPTD7);
 | 
			
		||||
    palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
 | 
			
		||||
    palSetPad(GPIOA, 5);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static float channel_2_frequency = 0.0f;
 | 
			
		||||
void         channel_2_set_frequency(float freq) {
 | 
			
		||||
    channel_2_frequency = freq;
 | 
			
		||||
 | 
			
		||||
    channel_2_stop();
 | 
			
		||||
    if (freq <= 0.0)  // a pause/rest has freq=0
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    gpt7cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
 | 
			
		||||
    channel_2_start();
 | 
			
		||||
}
 | 
			
		||||
float channel_2_get_frequency(void) { return channel_2_frequency; }
 | 
			
		||||
 | 
			
		||||
static void gpt_audio_state_cb(GPTDriver *gptp) {
 | 
			
		||||
    if (audio_update_state()) {
 | 
			
		||||
#if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
        // one piezo/speaker connected to both audio pins, the generated square-waves are inverted
 | 
			
		||||
        channel_1_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
        channel_2_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
 | 
			
		||||
#else  // two separate audio outputs/speakers
 | 
			
		||||
       // primary speaker on A4, optional secondary on A5
 | 
			
		||||
        if (AUDIO_PIN == A4) {
 | 
			
		||||
            channel_1_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
            if (AUDIO_PIN_ALT == A5) {
 | 
			
		||||
                if (audio_get_number_of_active_tones() > 1) {
 | 
			
		||||
                    channel_2_set_frequency(audio_get_processed_frequency(1));
 | 
			
		||||
                } else {
 | 
			
		||||
                    channel_2_stop();
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // primary speaker on A5, optional secondary on A4
 | 
			
		||||
        if (AUDIO_PIN == A5) {
 | 
			
		||||
            channel_2_set_frequency(audio_get_processed_frequency(0));
 | 
			
		||||
            if (AUDIO_PIN_ALT == A4) {
 | 
			
		||||
                if (audio_get_number_of_active_tones() > 1) {
 | 
			
		||||
                    channel_1_set_frequency(audio_get_processed_frequency(1));
 | 
			
		||||
                } else {
 | 
			
		||||
                    channel_1_stop();
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_initialize() {
 | 
			
		||||
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
			
		||||
        palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
 | 
			
		||||
        dacStart(&DACD1, &dac_conf_ch1);
 | 
			
		||||
 | 
			
		||||
        // initial setup of the dac-triggering timer is still required, even
 | 
			
		||||
        // though it gets reconfigured and restarted later on
 | 
			
		||||
        gptStart(&GPTD6, &gpt6cfg1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
			
		||||
        palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
 | 
			
		||||
        dacStart(&DACD2, &dac_conf_ch2);
 | 
			
		||||
 | 
			
		||||
        gptStart(&GPTD7, &gpt7cfg1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* enable the output buffer, to directly drive external loads with no additional circuitry
 | 
			
		||||
     *
 | 
			
		||||
     * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
 | 
			
		||||
     * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
 | 
			
		||||
     * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
 | 
			
		||||
     *
 | 
			
		||||
     * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
 | 
			
		||||
     * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
 | 
			
		||||
     */
 | 
			
		||||
    DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
 | 
			
		||||
    DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
 | 
			
		||||
 | 
			
		||||
    // start state-updater
 | 
			
		||||
    gptStart(&AUDIO_STATE_TIMER, &gptStateUpdateCfg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_stop(void) {
 | 
			
		||||
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
			
		||||
        gptStopTimer(&GPTD6);
 | 
			
		||||
 | 
			
		||||
        // stop the ongoing conversion and put the output in a known state
 | 
			
		||||
        dacStopConversion(&DACD1);
 | 
			
		||||
        dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
			
		||||
        gptStopTimer(&GPTD7);
 | 
			
		||||
 | 
			
		||||
        dacStopConversion(&DACD2);
 | 
			
		||||
        dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
 | 
			
		||||
    }
 | 
			
		||||
    gptStopTimer(&AUDIO_STATE_TIMER);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_start(void) {
 | 
			
		||||
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
			
		||||
        dacStartConversion(&DACD1, &dac_conv_grp_ch1, (dacsample_t *)dac_buffer_1, AUDIO_DAC_BUFFER_SIZE);
 | 
			
		||||
    }
 | 
			
		||||
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
			
		||||
        dacStartConversion(&DACD2, &dac_conv_grp_ch2, (dacsample_t *)dac_buffer_2, AUDIO_DAC_BUFFER_SIZE);
 | 
			
		||||
    }
 | 
			
		||||
    gptStartContinuous(&AUDIO_STATE_TIMER, 2U);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1,40 +0,0 @@
 | 
			
		|||
/* Copyright 2020 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PWM_DRIVER)
 | 
			
		||||
// NOTE: Timer2 seems to be used otherwise in QMK, otherwise we could default to A5 (= TIM2_CH1, with PWMD2 and alternate-function(1))
 | 
			
		||||
#    define AUDIO_PWM_DRIVER PWMD1
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PWM_CHANNEL)
 | 
			
		||||
// NOTE: sticking to the STM data-sheet numbering: TIMxCH1 to TIMxCH4
 | 
			
		||||
// default: STM32F303CC PA8+TIM1_CH1 -> 1
 | 
			
		||||
#    define AUDIO_PWM_CHANNEL 1
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PWM_PAL_MODE)
 | 
			
		||||
// pin-alternate function: see the data-sheet for which pin needs what AF to connect to TIMx_CHy
 | 
			
		||||
// default: STM32F303CC PA8+TIM1_CH1 -> 6
 | 
			
		||||
#    define AUDIO_PWM_PAL_MODE 6
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_STATE_TIMER)
 | 
			
		||||
// timer used to trigger updates in the audio-system, configured/enabled in chibios mcuconf.
 | 
			
		||||
// Tim6 is the default for "larger" STMs, smaller ones might not have this one (enabled) and need to switch to a different one (e.g.: STM32F103 has only Tim1-Tim4)
 | 
			
		||||
#    define AUDIO_STATE_TIMER GPTD6
 | 
			
		||||
#endif
 | 
			
		||||
| 
						 | 
				
			
			@ -1,144 +0,0 @@
 | 
			
		|||
/* Copyright 2020 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
Audio Driver: PWM
 | 
			
		||||
 | 
			
		||||
the duty-cycle is always kept at 50%, and the pwm-period is adjusted to match the frequency of a note to be played back.
 | 
			
		||||
 | 
			
		||||
this driver uses the chibios-PWM system to produce a square-wave on specific output pins that are connected to the PWM hardware.
 | 
			
		||||
The hardware directly toggles the pin via its alternate function. see your MCUs data-sheet for which pin can be driven by what timer - looking for TIMx_CHy and the corresponding alternate function.
 | 
			
		||||
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "audio.h"
 | 
			
		||||
#include "ch.h"
 | 
			
		||||
#include "hal.h"
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PIN)
 | 
			
		||||
#    error "Audio feature enabled, but no pin selected - see docs/feature_audio under the ARM PWM settings"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
extern bool    playing_note;
 | 
			
		||||
extern bool    playing_melody;
 | 
			
		||||
extern uint8_t note_timbre;
 | 
			
		||||
 | 
			
		||||
static PWMConfig pwmCFG = {
 | 
			
		||||
    .frequency = 100000, /* PWM clock frequency  */
 | 
			
		||||
    // CHIBIOS-BUG? can't set the initial period to <2, or the pwm (hard or software) takes ~130ms with .frequency=500000 for a pwmChangePeriod to take effect; with no output=silence in the meantime
 | 
			
		||||
    .period   = 2,    /* initial PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
 | 
			
		||||
    .callback = NULL, /* no callback, the hardware directly toggles the pin */
 | 
			
		||||
    .channels =
 | 
			
		||||
        {
 | 
			
		||||
#if AUDIO_PWM_CHANNEL == 4
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},   /* channel 0 -> TIMx_CH1 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},   /* channel 1 -> TIMx_CH2 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},   /* channel 2 -> TIMx_CH3 */
 | 
			
		||||
            {PWM_OUTPUT_ACTIVE_HIGH, NULL} /* channel 3 -> TIMx_CH4 */
 | 
			
		||||
#elif AUDIO_PWM_CHANNEL == 3
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},
 | 
			
		||||
            {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* TIMx_CH3 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL}
 | 
			
		||||
#elif AUDIO_PWM_CHANNEL == 2
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},
 | 
			
		||||
            {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* TIMx_CH2 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL}
 | 
			
		||||
#else /*fallback to CH1 */
 | 
			
		||||
            {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* TIMx_CH1 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL}
 | 
			
		||||
#endif
 | 
			
		||||
        },
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static float channel_1_frequency = 0.0f;
 | 
			
		||||
void         channel_1_set_frequency(float freq) {
 | 
			
		||||
    channel_1_frequency = freq;
 | 
			
		||||
 | 
			
		||||
    if (freq <= 0.0)  // a pause/rest has freq=0
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    pwmcnt_t period = (pwmCFG.frequency / freq);
 | 
			
		||||
    pwmChangePeriod(&AUDIO_PWM_DRIVER, period);
 | 
			
		||||
    pwmEnableChannel(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1,
 | 
			
		||||
                     // adjust the duty-cycle so that the output is for 'note_timbre' duration HIGH
 | 
			
		||||
                     PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float channel_1_get_frequency(void) { return channel_1_frequency; }
 | 
			
		||||
 | 
			
		||||
void channel_1_start(void) {
 | 
			
		||||
    pwmStop(&AUDIO_PWM_DRIVER);
 | 
			
		||||
    pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_1_stop(void) { pwmStop(&AUDIO_PWM_DRIVER); }
 | 
			
		||||
 | 
			
		||||
static void gpt_callback(GPTDriver *gptp);
 | 
			
		||||
GPTConfig   gptCFG = {
 | 
			
		||||
    /* a whole note is one beat, which is - per definition in musical_notes.h - set to 64
 | 
			
		||||
       the longest note is BREAVE_DOT=128+64=192, the shortest SIXTEENTH=4
 | 
			
		||||
       the tempo (which might vary!) is in bpm (beats per minute)
 | 
			
		||||
       therefore: if the timer ticks away at .frequency = (60*64)Hz,
 | 
			
		||||
       and the .interval counts from 64 downwards - audio_update_state is
 | 
			
		||||
       called just often enough to not miss any notes
 | 
			
		||||
    */
 | 
			
		||||
    .frequency = 60 * 64,
 | 
			
		||||
    .callback  = gpt_callback,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
void audio_driver_initialize(void) {
 | 
			
		||||
    pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
 | 
			
		||||
 | 
			
		||||
    // connect the AUDIO_PIN to the PWM hardware
 | 
			
		||||
#if defined(USE_GPIOV1)  // STM32F103C8
 | 
			
		||||
    palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE_PUSHPULL);
 | 
			
		||||
#else  // GPIOv2 (or GPIOv3 for f4xx, which is the same/compatible at this command)
 | 
			
		||||
    palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE(AUDIO_PWM_PAL_MODE));
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    gptStart(&AUDIO_STATE_TIMER, &gptCFG);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_start(void) {
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
    channel_1_start();
 | 
			
		||||
 | 
			
		||||
    if (playing_note || playing_melody) {
 | 
			
		||||
        gptStartContinuous(&AUDIO_STATE_TIMER, 64);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_stop(void) {
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
    gptStopTimer(&AUDIO_STATE_TIMER);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* a regular timer task, that checks the note to be currently played
 | 
			
		||||
 * and updates the pwm to output that frequency
 | 
			
		||||
 */
 | 
			
		||||
static void gpt_callback(GPTDriver *gptp) {
 | 
			
		||||
    float freq;  // TODO: freq_alt
 | 
			
		||||
 | 
			
		||||
    if (audio_update_state()) {
 | 
			
		||||
        freq = audio_get_processed_frequency(0);  // freq_alt would be index=1
 | 
			
		||||
        channel_1_set_frequency(freq);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1,164 +0,0 @@
 | 
			
		|||
/* Copyright 2020 Jack Humbert
 | 
			
		||||
 * Copyright 2020 JohSchneider
 | 
			
		||||
 *
 | 
			
		||||
 * This program is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 2 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * This program is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
Audio Driver: PWM
 | 
			
		||||
 | 
			
		||||
the duty-cycle is always kept at 50%, and the pwm-period is adjusted to match the frequency of a note to be played back.
 | 
			
		||||
 | 
			
		||||
this driver uses the chibios-PWM system to produce a square-wave on any given output pin in software
 | 
			
		||||
- a pwm callback is used to set/clear the configured pin.
 | 
			
		||||
 | 
			
		||||
 */
 | 
			
		||||
#include "audio.h"
 | 
			
		||||
#include "ch.h"
 | 
			
		||||
#include "hal.h"
 | 
			
		||||
 | 
			
		||||
#if !defined(AUDIO_PIN)
 | 
			
		||||
#    error "Audio feature enabled, but no pin selected - see docs/feature_audio under the ARM PWM settings"
 | 
			
		||||
#endif
 | 
			
		||||
extern bool    playing_note;
 | 
			
		||||
extern bool    playing_melody;
 | 
			
		||||
extern uint8_t note_timbre;
 | 
			
		||||
 | 
			
		||||
static void pwm_audio_period_callback(PWMDriver *pwmp);
 | 
			
		||||
static void pwm_audio_channel_interrupt_callback(PWMDriver *pwmp);
 | 
			
		||||
 | 
			
		||||
static PWMConfig pwmCFG = {
 | 
			
		||||
    .frequency = 100000, /* PWM clock frequency  */
 | 
			
		||||
    // CHIBIOS-BUG? can't set the initial period to <2, or the pwm (hard or software) takes ~130ms with .frequency=500000 for a pwmChangePeriod to take effect; with no output=silence in the meantime
 | 
			
		||||
    .period   = 2, /* initial PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
 | 
			
		||||
    .callback = pwm_audio_period_callback,
 | 
			
		||||
    .channels =
 | 
			
		||||
        {
 | 
			
		||||
            // software-PWM just needs another callback on any channel
 | 
			
		||||
            {PWM_OUTPUT_ACTIVE_HIGH, pwm_audio_channel_interrupt_callback}, /* channel 0 -> TIMx_CH1 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},                                    /* channel 1 -> TIMx_CH2 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL},                                    /* channel 2 -> TIMx_CH3 */
 | 
			
		||||
            {PWM_OUTPUT_DISABLED, NULL}                                     /* channel 3 -> TIMx_CH4 */
 | 
			
		||||
        },
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static float channel_1_frequency = 0.0f;
 | 
			
		||||
void         channel_1_set_frequency(float freq) {
 | 
			
		||||
    channel_1_frequency = freq;
 | 
			
		||||
 | 
			
		||||
    if (freq <= 0.0)  // a pause/rest has freq=0
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    pwmcnt_t period = (pwmCFG.frequency / freq);
 | 
			
		||||
    pwmChangePeriod(&AUDIO_PWM_DRIVER, period);
 | 
			
		||||
 | 
			
		||||
    pwmEnableChannel(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1,
 | 
			
		||||
                     // adjust the duty-cycle so that the output is for 'note_timbre' duration HIGH
 | 
			
		||||
                     PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float channel_1_get_frequency(void) { return channel_1_frequency; }
 | 
			
		||||
 | 
			
		||||
void channel_1_start(void) {
 | 
			
		||||
    pwmStop(&AUDIO_PWM_DRIVER);
 | 
			
		||||
    pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
 | 
			
		||||
 | 
			
		||||
    pwmEnablePeriodicNotification(&AUDIO_PWM_DRIVER);
 | 
			
		||||
    pwmEnableChannelNotification(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void channel_1_stop(void) {
 | 
			
		||||
    pwmStop(&AUDIO_PWM_DRIVER);
 | 
			
		||||
 | 
			
		||||
    palClearLine(AUDIO_PIN);  // leave the line low, after last note was played
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
    palClearLine(AUDIO_PIN_ALT);  // leave the line low, after last note was played
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// generate a PWM signal on any pin, not necessarily the one connected to the timer
 | 
			
		||||
static void pwm_audio_period_callback(PWMDriver *pwmp) {
 | 
			
		||||
    (void)pwmp;
 | 
			
		||||
    palClearLine(AUDIO_PIN);
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
    palSetLine(AUDIO_PIN_ALT);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
static void pwm_audio_channel_interrupt_callback(PWMDriver *pwmp) {
 | 
			
		||||
    (void)pwmp;
 | 
			
		||||
    if (channel_1_frequency > 0) {
 | 
			
		||||
        palSetLine(AUDIO_PIN);  // generate a PWM signal on any pin, not necessarily the one connected to the timer
 | 
			
		||||
#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
        palClearLine(AUDIO_PIN_ALT);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void gpt_callback(GPTDriver *gptp);
 | 
			
		||||
GPTConfig   gptCFG = {
 | 
			
		||||
    /* a whole note is one beat, which is - per definition in musical_notes.h - set to 64
 | 
			
		||||
       the longest note is BREAVE_DOT=128+64=192, the shortest SIXTEENTH=4
 | 
			
		||||
       the tempo (which might vary!) is in bpm (beats per minute)
 | 
			
		||||
       therefore: if the timer ticks away at .frequency = (60*64)Hz,
 | 
			
		||||
       and the .interval counts from 64 downwards - audio_update_state is
 | 
			
		||||
       called just often enough to not miss anything
 | 
			
		||||
    */
 | 
			
		||||
    .frequency = 60 * 64,
 | 
			
		||||
    .callback  = gpt_callback,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
void audio_driver_initialize(void) {
 | 
			
		||||
    pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
 | 
			
		||||
 | 
			
		||||
    palSetLineMode(AUDIO_PIN, PAL_MODE_OUTPUT_PUSHPULL);
 | 
			
		||||
    palClearLine(AUDIO_PIN);
 | 
			
		||||
 | 
			
		||||
#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
			
		||||
    palSetLineMode(AUDIO_PIN_ALT, PAL_MODE_OUTPUT_PUSHPULL);
 | 
			
		||||
    palClearLine(AUDIO_PIN_ALT);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    pwmEnablePeriodicNotification(&AUDIO_PWM_DRIVER);  // enable pwm callbacks
 | 
			
		||||
    pwmEnableChannelNotification(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1);
 | 
			
		||||
 | 
			
		||||
    gptStart(&AUDIO_STATE_TIMER, &gptCFG);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_start(void) {
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
    channel_1_start();
 | 
			
		||||
 | 
			
		||||
    if (playing_note || playing_melody) {
 | 
			
		||||
        gptStartContinuous(&AUDIO_STATE_TIMER, 64);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void audio_driver_stop(void) {
 | 
			
		||||
    channel_1_stop();
 | 
			
		||||
    gptStopTimer(&AUDIO_STATE_TIMER);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* a regular timer task, that checks the note to be currently played
 | 
			
		||||
 * and updates the pwm to output that frequency
 | 
			
		||||
 */
 | 
			
		||||
static void gpt_callback(GPTDriver *gptp) {
 | 
			
		||||
    float freq;  // TODO: freq_alt
 | 
			
		||||
 | 
			
		||||
    if (audio_update_state()) {
 | 
			
		||||
        freq = audio_get_processed_frequency(0);  // freq_alt would be index=1
 | 
			
		||||
        channel_1_set_frequency(freq);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue