Makefiles and library modified to add a new F_CLOCK constant to give the unprescaled master input clock frequency, so that the correct PLL mask can be determined even when the CPU (F_CPU) clock rate is prescaled outside the normal input range of the PLL.
Started to clean up the AVRISP Programmer project code, donated by Opendous Inc.
This commit is contained in:
parent
fa456ce531
commit
99145a8d7c
40 changed files with 632 additions and 250 deletions
|
@ -116,7 +116,7 @@ BUTTLOADTAG(LUFAVersion, "LUFA V" LUFA_VERSION_STRING);
|
|||
#define AVRDEVCODE02 0x56 /* ATtiny15 */
|
||||
#define AVRDEVCODE03 0x5E /* ATtiny261 */
|
||||
#define AVRDEVCODE04 0x76 /* ATmega8 */
|
||||
#define AVRDEVCODE05 0x74 /*ATmega16 */
|
||||
#define AVRDEVCODE05 0x74 /* ATmega16 */
|
||||
#define AVRDEVCODE06 0x72 /* ATmega32 */
|
||||
#define AVRDEVCODE07 0x45 /* ATmega64 */
|
||||
#define AVRDEVCODE08 0x74 /* ATmega644 */
|
||||
|
@ -155,20 +155,8 @@ RingBuff_t Tx_Buffer;
|
|||
/** Flag to indicate if the USART is currently transmitting data from the Rx_Buffer circular buffer. */
|
||||
volatile bool Transmitting = false;
|
||||
|
||||
|
||||
/* some global variables used throughout */
|
||||
uint8_t tempIOreg = 0;
|
||||
uint8_t tempIOreg2 = 0;
|
||||
uint8_t tempIOreg3 = 0;
|
||||
uint8_t tempIOreg4 = 0;
|
||||
uint8_t dataWidth = 0;
|
||||
uint8_t firstRun = 1;
|
||||
uint8_t deviceCode = 0;
|
||||
uint8_t tempByte = 0;
|
||||
uint16_t currAddress = 0;
|
||||
uint16_t timerval = 0;
|
||||
|
||||
|
||||
|
||||
/** Main program entry point. This routine configures the hardware required by the application, then
|
||||
starts the scheduler to run the application tasks.
|
||||
|
@ -185,9 +173,7 @@ int main(void)
|
|||
/* Hardware Initialization */
|
||||
LEDs_Init();
|
||||
ReconfigureSPI();
|
||||
// prepare PortB
|
||||
DDRB = 0;
|
||||
PORTB = 0;
|
||||
|
||||
DDRC |= ((1 << PC2) | (1 << PC4) | (1 << PC5) | (1 << PC6) | (1 << PC7)); //AT90USBxx2
|
||||
// PC2 is also used for RESET, so set it HIGH initially - note 'P' command sets it to LOW (Active)
|
||||
PORTC |= ((1 << PC2) | (1 << PC4) | (1 << PC5) | (1 << PC6) | (1 << PC7)); //AT90USBxx2
|
||||
|
@ -198,15 +184,7 @@ int main(void)
|
|||
PORTB |= (1 << PB0);
|
||||
// make sure DataFlash devices to not interfere - deselect them by setting PE0 and PE1 HIGH:
|
||||
PORTE = 0xFF;
|
||||
DDRE = 0xFF;
|
||||
|
||||
// initialize Timer1 for use in delay function
|
||||
TCCR1A = 0;
|
||||
//TCCR1B = (1 << CS10); // no prescaling, use CLK
|
||||
TCCR1B = ((1 << CS12) | (1 << CS10)); // prescale by CLK/1024
|
||||
// 8MHz/1024 = 7813 ticks per second --> ~8 ticks per millisecond (ms)
|
||||
timerval = TCNT1; // start timer1
|
||||
|
||||
DDRE = 0xFF;
|
||||
|
||||
/* Ringbuffer Initialization */
|
||||
Buffer_Initialize(&Rx_Buffer);
|
||||
|
@ -320,17 +298,6 @@ EVENT_HANDLER(USB_UnhandledControlPacket)
|
|||
case REQ_SetControlLineState:
|
||||
if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
|
||||
{
|
||||
#if 0
|
||||
/* NOTE: Here you can read in the line state mask from the host, to get the current state of the output handshake
|
||||
lines. The mask is read in from the wValue parameter, and can be masked against the CONTROL_LINE_OUT_* masks
|
||||
to determine the RTS and DTR line states using the following code:
|
||||
*/
|
||||
|
||||
uint16_t wIndex = Endpoint_Read_Word_LE();
|
||||
|
||||
// Do something with the given line states in wIndex
|
||||
#endif
|
||||
|
||||
/* Acknowedge the SETUP packet, ready for data transfer */
|
||||
Endpoint_ClearSetupReceived();
|
||||
|
||||
|
@ -347,30 +314,6 @@ TASK(CDC_Task)
|
|||
{
|
||||
if (USB_IsConnected)
|
||||
{
|
||||
#if 0
|
||||
/* NOTE: Here you can use the notification endpoint to send back line state changes to the host, for the special RS-232
|
||||
handshake signal lines (and some error states), via the CONTROL_LINE_IN_* masks and the following code:
|
||||
*/
|
||||
|
||||
USB_Notification_Header_t Notification = (USB_Notification_Header_t)
|
||||
{
|
||||
NotificationType: (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE),
|
||||
Notification: NOTIF_SerialState,
|
||||
wValue: 0,
|
||||
wIndex: 0,
|
||||
wLength: sizeof(uint16_t),
|
||||
};
|
||||
|
||||
uint16_t LineStateMask;
|
||||
|
||||
// Set LineStateMask here to a mask of CONTROL_LINE_IN_* masks to set the input handshake line states to send to the host
|
||||
|
||||
Endpoint_SelectEndpoint(CDC_NOTIFICATION_EPNUM);
|
||||
Endpoint_Write_Stream_LE(&Notification, sizeof(Notification));
|
||||
Endpoint_Write_Stream_LE(&LineStateMask, sizeof(LineStateMask));
|
||||
Endpoint_ClearCurrentBank();
|
||||
#endif
|
||||
|
||||
/* Select the Serial Rx Endpoint */
|
||||
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
|
||||
|
||||
|
@ -385,72 +328,41 @@ TASK(CDC_Task)
|
|||
/* Store each character from the endpoint */
|
||||
Buffer_StoreElement(&Rx_Buffer, Endpoint_Read_Byte());
|
||||
|
||||
|
||||
|
||||
|
||||
/* Each time there is an element, check which comand should be
|
||||
run and if enough data is available to run that command.
|
||||
There are 1-byte, 2-byte, 3-byte, 4-byte commands, and 5-byte commands
|
||||
Remember that the "which command" byte counts as 1 */
|
||||
if (Rx_Buffer.Elements == 0) {
|
||||
// do nothing, wait for data
|
||||
} else {
|
||||
tempByte = Buffer_PeekElement(&Rx_Buffer); // peek at first element
|
||||
|
||||
/* make sure the issued command and associated data are all ready */
|
||||
if (Rx_Buffer.Elements == 1) { // zero data byte command
|
||||
if ((tempByte == 'P') | (tempByte == 'a') | (tempByte == 'm') |
|
||||
(tempByte == 'R') | (tempByte == 'd') | (tempByte == 'e') |
|
||||
(tempByte == 'L') | (tempByte == 's') | (tempByte == 't') |
|
||||
(tempByte == 'S') | (tempByte == 'V') | (tempByte == 'v') |
|
||||
(tempByte == 'p') | (tempByte == 'F')) {
|
||||
processHostSPIRequest(); // command has enough data, process it
|
||||
}
|
||||
} else if (Rx_Buffer.Elements == 2) { // one data byte command
|
||||
if ((tempByte == 'T') | (tempByte == 'c') | (tempByte == 'C') |
|
||||
(tempByte == 'D') | (tempByte == 'l') | (tempByte == 'f') |
|
||||
(tempByte == 'x') | (tempByte == 'y')) {
|
||||
processHostSPIRequest(); // command has enough data, process it
|
||||
}
|
||||
} else if (Rx_Buffer.Elements == 3) { // two data byte command
|
||||
if ((tempByte == 'A') | (tempByte == 'Z')) {
|
||||
processHostSPIRequest(); // command has enough data, process it
|
||||
}
|
||||
} else if (Rx_Buffer.Elements == 4) { // three data byte command
|
||||
if ((tempByte == ':')) {
|
||||
processHostSPIRequest(); // command has enough data, process it
|
||||
}
|
||||
} else if (Rx_Buffer.Elements == 5) { // four data byte command
|
||||
if ((tempByte == '.')) {
|
||||
processHostSPIRequest(); // command has enough data, process it
|
||||
}
|
||||
} else {
|
||||
// do nothing
|
||||
}
|
||||
/* Run the given command once enough data is available. */
|
||||
if (Rx_Buffer.Elements)
|
||||
{
|
||||
const uint8_t ZeroDataByteCommands[] = {'P', 'a', 'm', 'R', 'd', 'e', 'L', 's', 't', 'S', 'V', 'v', 'p', 'F'};
|
||||
const uint8_t OneDataByteCommands[] = {'T', 'c', 'C', 'D', 'l', 'f', 'x', 'y'};
|
||||
const uint8_t TwoDataByteCommands[] = {'A', 'Z'};
|
||||
const uint8_t ThreeDataByteCommands[] = {':'};
|
||||
const uint8_t FourDataByteCommands[] = {'.'};
|
||||
|
||||
const struct
|
||||
{
|
||||
const uint8_t TotalCommands;
|
||||
const uint8_t* CommandBytes;
|
||||
} AVR910Commands[] = {{sizeof(ZeroDataByteCommands), ZeroDataByteCommands},
|
||||
{sizeof(OneDataByteCommands), OneDataByteCommands},
|
||||
{sizeof(TwoDataByteCommands), TwoDataByteCommands},
|
||||
{sizeof(ThreeDataByteCommands), ThreeDataByteCommands},
|
||||
{sizeof(FourDataByteCommands), FourDataByteCommands}};
|
||||
|
||||
/* Determine the data length of the issued command */
|
||||
uint8_t CommandDataLength = (Rx_Buffer.Elements - 1);
|
||||
|
||||
/* Loop through each of the possible command bytes allowable from the given command data length */
|
||||
for (uint8_t CurrentCommand = 0; CurrentCommand < AVR910Commands[CommandDataLength].TotalCommands; CurrentCommand++)
|
||||
{
|
||||
/* If issues command matches an allowable command, process it */
|
||||
if (Buffer_PeekElement(&Rx_Buffer) == AVR910Commands[CommandDataLength].CommandBytes[CurrentCommand])
|
||||
processHostSPIRequest();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* Clear the endpoint buffer */
|
||||
Endpoint_ClearCurrentBank();
|
||||
}
|
||||
|
||||
/* Check if Rx buffer contains data */
|
||||
if (Rx_Buffer.Elements)
|
||||
{
|
||||
/* Initiate the transmission of the buffer contents if USART idle */
|
||||
if (!(Transmitting))
|
||||
{
|
||||
Transmitting = true;
|
||||
/* The following flushes the receive buffer to prepare for new data and commands */
|
||||
/* Need to flush the buffer as the command byte which is peeked above needs to be */
|
||||
/* dealt with, otherwise the command bytes will overflow the buffer eventually */
|
||||
//Buffer_GetElement(&Rx_Buffer); // works also
|
||||
Buffer_Initialize(&Rx_Buffer);
|
||||
}
|
||||
}
|
||||
|
||||
/* Select the Serial Tx Endpoint */
|
||||
Endpoint_SelectEndpoint(CDC_TX_EPNUM);
|
||||
|
@ -484,12 +396,10 @@ TASK(CDC_Task)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Function to manage status updates to the user. This is done via LEDs on the given board, if available, but may be changed to
|
||||
log to a serial port, or anything else that is suitable for status updates.
|
||||
* log to a serial port, or anything else that is suitable for status updates.
|
||||
*
|
||||
\param CurrentStatus Current status of the system, from the USBtoSerial_StatusCodes_t enum
|
||||
* \param CurrentStatus Current status of the system, from the USBtoSerial_StatusCodes_t enum
|
||||
*/
|
||||
void UpdateStatus(uint8_t CurrentStatus)
|
||||
{
|
||||
|
@ -513,22 +423,12 @@ void UpdateStatus(uint8_t CurrentStatus)
|
|||
LEDs_SetAllLEDs(LEDMask);
|
||||
}
|
||||
|
||||
|
||||
/** Reconfigures SPI to match the current serial port settings issued by the host. */
|
||||
void ReconfigureSPI(void)
|
||||
{
|
||||
uint8_t SPCRmask = (1 << SPE) | (1 << MSTR); // always enable SPI as Master
|
||||
uint8_t SPSRmask = 0;
|
||||
|
||||
/* Determine data width */
|
||||
if (LineCoding.ParityType == Parity_Odd) {
|
||||
dataWidth = 16;
|
||||
} else if (LineCoding.ParityType == Parity_Even) {
|
||||
dataWidth = 32;
|
||||
} else if (LineCoding.ParityType == Parity_None) {
|
||||
dataWidth = 8;
|
||||
}
|
||||
|
||||
/* Determine stop bits - 1.5 stop bits is set as 1 stop bit due to hardware limitations */
|
||||
/* For SPI, determine whether format is LSB or MSB */
|
||||
if (LineCoding.CharFormat == TwoStopBits) {
|
||||
|
@ -579,14 +479,6 @@ void ReconfigureSPI(void)
|
|||
|
||||
SPCR = SPCRmask;
|
||||
SPSR = SPSRmask;
|
||||
|
||||
// only read if first run
|
||||
if (firstRun) {
|
||||
tempIOreg = SPSR; //need to read to initiliaze
|
||||
tempIOreg = SPDR; //need to read to initiliaze
|
||||
firstRun = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -642,20 +534,20 @@ void processHostSPIRequest(void) {
|
|||
//PORTB = 0; // set clock to zero
|
||||
RESETPORT = (1 << RESETPIN); // set RESET pin on target to 1
|
||||
RESETPORT2 = (1 << RESETPIN2);
|
||||
delay_ms(DELAY_SHORT);
|
||||
_delay_ms(DELAY_SHORT);
|
||||
//RESETPORT = (RESETPORT & ~(1 << RESETPIN)); // set RESET pin on target to 0 - Active
|
||||
RESETPORT = 0x00;
|
||||
RESETPORT2 = 0;
|
||||
delay_ms(DELAY_SHORT);
|
||||
_delay_ms(DELAY_SHORT);
|
||||
SPI_SendByte(0xAC);
|
||||
SPI_SendByte(0x53);
|
||||
SPI_SendByte(0x00);
|
||||
SPI_SendByte(0x00);
|
||||
delay_ms(DELAY_VERYSHORT);
|
||||
_delay_ms(DELAY_VERYSHORT);
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'T') { // Select device type
|
||||
deviceCode = Buffer_GetElement(&Rx_Buffer); // set device type
|
||||
Buffer_GetElement(&Rx_Buffer); // set device type
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'a') { // Report autoincrement address
|
||||
|
@ -675,7 +567,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte((currAddress >> 8)); // high byte
|
||||
SPI_SendByte((currAddress)); // low byte
|
||||
SPI_SendByte(readByte1); // data
|
||||
delay_ms(DELAY_MEDIUM); // certain MCUs require a delay of about 24585 cycles
|
||||
_delay_ms(DELAY_MEDIUM); // certain MCUs require a delay of about 24585 cycles
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'C') { // Write program memory, high byte
|
||||
|
@ -694,7 +586,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte((currAddress >> 8)); // high byte
|
||||
SPI_SendByte((currAddress)); // low byte
|
||||
SPI_SendByte(0x00);
|
||||
delay_ms(DELAY_LONG);
|
||||
_delay_ms(DELAY_LONG);
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'R') { // Read Program Memory
|
||||
|
@ -719,7 +611,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte((currAddress >> 8)); // high byte
|
||||
SPI_SendByte((currAddress)); // low byte
|
||||
SPI_SendByte(readByte1); // data
|
||||
delay_ms(DELAY_MEDIUM);
|
||||
_delay_ms(DELAY_MEDIUM);
|
||||
currAddress++; // increment currAddress
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
|
@ -738,7 +630,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte(0x80);
|
||||
SPI_SendByte(0x04);
|
||||
SPI_SendByte(0x00);
|
||||
delay_ms(DELAY_LONG);
|
||||
_delay_ms(DELAY_LONG);
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'l') { // write lock bits
|
||||
|
@ -748,7 +640,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte(((0x06 & readByte1) | 0xE0)); // TODO - is this correct???
|
||||
SPI_SendByte(0x00);
|
||||
SPI_SendByte(0x00);
|
||||
delay_ms(DELAY_MEDIUM);
|
||||
_delay_ms(DELAY_MEDIUM);
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'f') { // write fuse bits
|
||||
|
@ -840,7 +732,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte(readByte3);
|
||||
readByte1 = SPI_TransferByte(0x00);
|
||||
Buffer_StoreElement(&Tx_Buffer, readByte1);
|
||||
delay_ms(DELAY_MEDIUM);
|
||||
_delay_ms(DELAY_MEDIUM);
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == '.') { // New Universal Command
|
||||
|
@ -854,7 +746,7 @@ void processHostSPIRequest(void) {
|
|||
SPI_SendByte(readByte3);
|
||||
readByte1 = SPI_TransferByte(readByte4);
|
||||
Buffer_StoreElement(&Tx_Buffer, readByte1);
|
||||
delay_ms(DELAY_MEDIUM);
|
||||
_delay_ms(DELAY_MEDIUM);
|
||||
Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful
|
||||
|
||||
} else if (firstByte == 'Z') { // Special test command
|
||||
|
@ -868,19 +760,3 @@ void processHostSPIRequest(void) {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
void delay_ms(uint8_t dly) {
|
||||
uint16_t endtime = 0;
|
||||
|
||||
endtime = TCNT1;
|
||||
if (endtime > 63486) {
|
||||
endtime = (dly * DELAY_MULTIPLE);
|
||||
} else {
|
||||
endtime += (dly * DELAY_MULTIPLE);
|
||||
}
|
||||
|
||||
timerval = TCNT1;
|
||||
while (timerval < endtime) {
|
||||
timerval = TCNT1;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
#define _AVRISP_PROGRAMMER_H_
|
||||
|
||||
/* Includes: */
|
||||
#include <util/delay.h>
|
||||
#include <avr/io.h>
|
||||
#include <avr/wdt.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
@ -189,6 +190,5 @@
|
|||
void ReconfigureSPI(void);
|
||||
void UpdateStatus(uint8_t CurrentStatus);
|
||||
void processHostSPIRequest(void);
|
||||
void delay_ms(uint8_t dly);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -90,6 +90,20 @@ BOARD = USBKEY
|
|||
F_CPU = 8000000
|
||||
|
||||
|
||||
# Input clock frequency.
|
||||
# This will define a symbol, F_CLOCK, in all source code files equal to the
|
||||
# input clock frequency (before any prescaling is performed). This value may
|
||||
# differ from F_CPU if prescaling is used on the latter, and is required as the
|
||||
# raw input clock is fed directly to the PLL sections of the AVR for high speed
|
||||
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
|
||||
# at the end, this will be done automatically to create a 32-bit value in your
|
||||
# source code.
|
||||
#
|
||||
# If no clock division is performed on the input clock inside the AVR (via the
|
||||
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
|
||||
F_CLOCK = 8000000
|
||||
|
||||
|
||||
# Output format. (can be srec, ihex, binary)
|
||||
FORMAT = ihex
|
||||
|
||||
|
@ -161,8 +175,9 @@ CSTANDARD = -std=gnu99
|
|||
|
||||
|
||||
# Place -D or -U options here for C sources
|
||||
CDEFS = -DF_CPU=$(F_CPU)UL -DBOARD=BOARD_$(BOARD) -DUSE_NONSTANDARD_DESCRIPTOR_NAMES -DNO_STREAM_CALLBACKS
|
||||
CDEFS += -DUSB_DEVICE_ONLY -DUSE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
|
||||
CDEFS = -DF_CPU=$(F_CPU)UL -DF_CLOCK=$(F_CLOCK)UL -DBOARD=BOARD_$(BOARD)
|
||||
CDEFS += -DUSE_NONSTANDARD_DESCRIPTOR_NAMES -DNO_STREAM_CALLBACKS -DUSB_DEVICE_ONLY
|
||||
CDEFS += -DUSE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
|
||||
|
||||
|
||||
# Place -D or -U options here for ASM sources
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue