Moved all source to the trunk directory.

This commit is contained in:
Dean Camera 2009-02-23 07:08:22 +00:00
parent 9991321321
commit 6a10d6b465
88 changed files with 15575 additions and 0 deletions

View file

@ -0,0 +1,313 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#include "USBMode.h"
#if defined(USB_CAN_BE_DEVICE)
#define INCLUDE_FROM_DEVCHAPTER9_C
#include "DevChapter9.h"
uint8_t USB_ConfigurationNumber;
bool USB_RemoteWakeupEnabled;
bool USB_CurrentlySelfPowered;
void USB_Device_ProcessControlPacket(void)
{
uint8_t bmRequestType = Endpoint_Read_Byte();
uint8_t bRequest = Endpoint_Read_Byte();
bool RequestHandled = false;
switch (bRequest)
{
case REQ_GetStatus:
if ((bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_DEVICE)) ||
(bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_ENDPOINT)))
{
USB_Device_GetStatus(bmRequestType);
RequestHandled = true;
}
break;
#if !defined(NO_CLEARSET_FEATURE_REQUEST)
case REQ_ClearFeature:
case REQ_SetFeature:
if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_STANDARD | REQREC_ENDPOINT))
{
USB_Device_ClearSetFeature(bRequest, bmRequestType);
RequestHandled = true;
}
break;
#endif
case REQ_SetAddress:
if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_STANDARD | REQREC_DEVICE))
{
USB_Device_SetAddress();
RequestHandled = true;
}
break;
case REQ_GetDescriptor:
if ((bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_DEVICE)) ||
(bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_INTERFACE)))
{
USB_Device_GetDescriptor();
RequestHandled = true;
}
break;
case REQ_GetConfiguration:
if (bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_DEVICE))
{
USB_Device_GetConfiguration();
RequestHandled = true;
}
break;
case REQ_SetConfiguration:
if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_STANDARD | REQREC_DEVICE))
{
USB_Device_SetConfiguration();
RequestHandled = true;
}
break;
}
if (!(RequestHandled))
RAISE_EVENT(USB_UnhandledControlPacket, bRequest, bmRequestType);
if (Endpoint_IsSetupReceived())
{
Endpoint_StallTransaction();
Endpoint_ClearSetupReceived();
}
}
static void USB_Device_SetAddress(void)
{
uint8_t wValue_LSB = Endpoint_Read_Byte();
Endpoint_ClearSetupReceived();
while (!(Endpoint_IsSetupINReady()));
Endpoint_ClearSetupIN();
while (!(Endpoint_IsSetupINReady()));
UDADDR = ((1 << ADDEN) | (wValue_LSB & 0x7F));
return;
}
static void USB_Device_SetConfiguration(void)
{
uint8_t wValue_LSB = Endpoint_Read_Byte();
bool AlreadyConfigured = (USB_ConfigurationNumber != 0);
#if defined(USE_SINGLE_DEVICE_CONFIGURATION)
if (wValue_LSB > 1)
#else
USB_Descriptor_Device_t* DevDescriptorPtr;
if ((USB_GetDescriptor((DTYPE_Device << 8), 0, (void*)&DevDescriptorPtr) == NO_DESCRIPTOR) ||
#if defined(USE_RAM_DESCRIPTORS)
(wValue_LSB > DevDescriptorPtr->NumberOfConfigurations))
#elif defined (USE_EEPROM_DESCRIPTORS)
(wValue_LSB > eeprom_read_byte(&DevDescriptorPtr->NumberOfConfigurations)))
#else
(wValue_LSB > pgm_read_byte(&DevDescriptorPtr->NumberOfConfigurations)))
#endif
#endif
{
return;
}
Endpoint_ClearSetupReceived();
USB_ConfigurationNumber = wValue_LSB;
Endpoint_ClearSetupIN();
if (!(AlreadyConfigured) && USB_ConfigurationNumber)
RAISE_EVENT(USB_DeviceEnumerationComplete);
RAISE_EVENT(USB_ConfigurationChanged);
}
void USB_Device_GetConfiguration(void)
{
Endpoint_ClearSetupReceived();
Endpoint_Write_Byte(USB_ConfigurationNumber);
Endpoint_ClearSetupIN();
while (!(Endpoint_IsSetupOUTReceived()));
Endpoint_ClearSetupOUT();
}
static void USB_Device_GetDescriptor(void)
{
uint16_t wValue = Endpoint_Read_Word_LE();
uint16_t wIndex = Endpoint_Read_Word_LE();
uint16_t wLength = Endpoint_Read_Word_LE();
void* DescriptorPointer;
uint16_t DescriptorSize;
bool SendZLP;
if ((DescriptorSize = USB_GetDescriptor(wValue, wIndex, &DescriptorPointer)) == NO_DESCRIPTOR)
return;
Endpoint_ClearSetupReceived();
if (wLength > DescriptorSize)
wLength = DescriptorSize;
while (wLength)
{
while (!(Endpoint_IsSetupINReady()))
{
if (Endpoint_IsSetupOUTReceived())
{
Endpoint_ClearSetupOUT();
return;
}
}
while (wLength && (Endpoint_BytesInEndpoint() < USB_ControlEndpointSize))
{
#if defined(USE_RAM_DESCRIPTORS)
Endpoint_Write_Byte(*((uint8_t*)DescriptorPointer++));
#elif defined (USE_EEPROM_DESCRIPTORS)
Endpoint_Write_Byte(eeprom_read_byte(DescriptorPointer++));
#else
Endpoint_Write_Byte(pgm_read_byte(DescriptorPointer++));
#endif
wLength--;
}
SendZLP = (Endpoint_BytesInEndpoint() == USB_ControlEndpointSize);
Endpoint_ClearSetupIN();
}
if (SendZLP)
{
while (!(Endpoint_IsSetupINReady()));
Endpoint_ClearSetupIN();
}
while (!(Endpoint_IsSetupOUTReceived()));
Endpoint_ClearSetupOUT();
}
static void USB_Device_GetStatus(const uint8_t bmRequestType)
{
uint8_t CurrentStatus = 0;
Endpoint_Discard_Word();
uint8_t wIndex_LSB = Endpoint_Read_Byte();
switch (bmRequestType)
{
case (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_DEVICE):
if (USB_CurrentlySelfPowered)
CurrentStatus |= FEATURE_SELFPOWERED_ENABLED;
if (USB_RemoteWakeupEnabled)
CurrentStatus |= FEATURE_REMOTE_WAKEUP_ENABLED;
break;
case (REQDIR_DEVICETOHOST | REQTYPE_STANDARD | REQREC_ENDPOINT):
Endpoint_SelectEndpoint(wIndex_LSB);
CurrentStatus = Endpoint_IsStalled();
break;
}
Endpoint_SelectEndpoint(ENDPOINT_CONTROLEP);
Endpoint_ClearSetupReceived();
Endpoint_Write_Word_LE(CurrentStatus);
Endpoint_ClearSetupIN();
while (!(Endpoint_IsSetupOUTReceived()));
Endpoint_ClearSetupOUT();
}
#if !defined(NO_CLEARSET_FEATURE_REQUEST)
static void USB_Device_ClearSetFeature(const uint8_t bRequest, const uint8_t bmRequestType)
{
uint16_t wValue = Endpoint_Read_Word_LE();
uint16_t wIndex = Endpoint_Read_Word_LE();
switch (bmRequestType & CONTROL_REQTYPE_RECIPIENT)
{
case REQREC_ENDPOINT:
if (wValue == FEATURE_ENDPOINT_HALT)
{
uint8_t EndpointIndex = (wIndex & ENDPOINT_EPNUM_MASK);
if (EndpointIndex != ENDPOINT_CONTROLEP)
{
Endpoint_SelectEndpoint(EndpointIndex);
if (Endpoint_IsEnabled())
{
if (bRequest == REQ_ClearFeature)
{
Endpoint_ClearStall();
Endpoint_ResetFIFO(EndpointIndex);
Endpoint_ResetDataToggle();
}
else
{
Endpoint_StallTransaction();
}
}
Endpoint_SelectEndpoint(ENDPOINT_CONTROLEP);
Endpoint_ClearSetupReceived();
Endpoint_ClearSetupIN();
}
}
break;
}
}
#endif
#endif

View file

@ -0,0 +1,135 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Module for device mode request processing. This module allows for the processing of standard control
* requests to the default control endpoint while in device mode.
*
* \see Chapter 9 of the USB 2.0 specification.
*/
#ifndef __DEVCHAPTER9_H__
#define __DEVCHAPTER9_H__
/* Includes: */
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include "../HighLevel/StdDescriptors.h"
#include "../HighLevel/Events.h"
#include "LowLevel.h"
#include "StdRequestType.h"
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Public Interface - May be used in end-application: */
/* Global Variables: */
/** Indicates the currently set configuration number of the device. USB devices may have several
* different configurations which the host can select between; this indicates the currently selected
* value, or 0 if no configuration has been selected.
*
* If a device has only one single configuration, the token USE_SINGLE_DEVICE_CONFIGURATION may be
* defined in the project makefile and passed to the compiler using the -D switch. This optimize for
* a single configuration, saving a small amount of space in the resulting compiled binary.
*
* \note This variable should be treated as read-only in the user application, and never manually
* changed in value.
*/
extern uint8_t USB_ConfigurationNumber;
/** Indicates if the host is currently allowing the device to issue remote wakeup events. If this
* flag is cleared, the device should not issue remote wakeup events to the host.
*
* \note This variable should be treated as read-only in the user application, and never manually
* changed in value.
*/
extern bool USB_RemoteWakeupEnabled;
/** Indicates if the device is currently being powered by its own power supply, rather than being
* powered by the host's USB supply. This flag should remain cleared if the device does not
* support self powered mode, as indicated in the device descriptors.
*/
extern bool USB_CurrentlySelfPowered;
/* Throwable Events: */
/** This module raises the USB_UnhandledControlPacket event when a request to the default control
* endpoint has been received, but the library does not implement an internal handler for it.
*
* \see Events.h for more information on this event.
*/
RAISES_EVENT(USB_UnhandledControlPacket);
/** This module raises the USB_ConfigurationChanged event when the host issues a REQ_SetConfiguration
* device request, to change the currently selected configuration number.
*
* \see Events.h for more information on this event.
*/
RAISES_EVENT(USB_ConfigurationChanged);
/** This module raises the USB_DeviceEnumerationComplete event when the host has completed its
* enumeration of the device (i.e. when a REQ_SetConfiguration request changes the current configuration
* number from 0 to a non-zero value).
*
* \see Events.h for more information on this event.
*/
RAISES_EVENT(USB_DeviceEnumerationComplete);
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
#if defined(USE_RAM_DESCRIPTORS) && defined(USE_EEPROM_DESCRIPTORS)
#error USE_RAM_DESCRIPTORS and USE_EEPROM_DESCRIPTORS are mutually exclusive.
#endif
/* Function Prototypes: */
void USB_Device_ProcessControlPacket(void);
#if defined(INCLUDE_FROM_DEVCHAPTER9_C)
static void USB_Device_SetAddress(void);
static void USB_Device_SetConfiguration(void);
static void USB_Device_GetConfiguration(void);
static void USB_Device_GetDescriptor(void);
static void USB_Device_GetStatus(const uint8_t bmRequestType);
#if !defined(NO_CLEARSET_FEATURE_REQUEST)
static void USB_Device_ClearSetFeature(const uint8_t bRequest, const uint8_t bmRequestType);
#endif
#endif
#endif
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,126 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device mode related macros and enums. This module contains macros and enums which are used when
* the USB controller is initialized in device mode.
*/
#ifndef __USBDEVICE_H__
#define __USBDEVICE_H__
/* Includes: */
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include "../../../Common/Common.h"
#include "../HighLevel/StdDescriptors.h"
#include "Endpoint.h"
/* Public Interface - May be used in end-application: */
/* Macros: */
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER) || defined(__DOXYGEN__)
/** Mask for the Options parameter of the USB_Init() function. This indicates that the
* USB interface should be initialized in low speed (1.5Mb/s) mode.
*
* \note Low Speed mode is not available on all USB AVR models.
*
* \note Restrictions apply on the number, size and type of endpoints which can be used
* when running in low speed mode -- refer to the USB 2.0 standard.
*/
#define USB_DEVICE_OPT_LOWSPEED (1 << 0)
#endif
/** Mask for the Options parameter of the USB_Init() function. This indicates that the
* USB interface should be initialized in full speed (12Mb/s) mode.
*/
#define USB_DEVICE_OPT_FULLSPEED (0 << 0)
/** Sends a Remote Wakeup request to the host. This signals to the host that the device should
* be taken out of suspended mode, and communications should resume.
*
* Typically, this is implemented so that HID devices (mice, keyboards, etc.) can wake up the
* host computer when the host has suspended all USB devices to enter a low power state.
*
* \note This macro should only be used if the device has indicated to the host that it
* supports the Remote Wakeup feature in the device descriptors, and should only be
* issued if the host is currently allowing remote wakeup events from the device (i.e.,
* the USB_RemoteWakeupEnabled flag is set, see DevChapter9.h documentation).
*
* \see StdDescriptors.h for more information on the RMWAKEUP feature and device descriptors.
*/
#define USB_Device_SendRemoteWakeup() MACROS{ UDCON |= (1 << RMWKUP); }MACROE
/** Indicates if a Remote Wakeup request is being sent to the host. This returns true if a
* remote wakeup is currently being sent, false otherwise.
*
* This can be used in conjunction with the USB_Device_IsUSBSuspended() macro to determine if
* a sent RMWAKEUP request was accepted or rejected by the host.
*
* \note This macro should only be used if the device has indicated to the host that it
* supports the Remote Wakeup feature in the device descriptors.
*
* \see StdDescriptors.h for more information on the RMWAKEUP feature and device descriptors.
*/
#define USB_Device_IsRemoteWakeupSent() ((UDCON & (1 << RMWKUP)) ? false : true)
/** Indicates if the device is currently suspended by the host. While suspended, the device is
* to enter a low power state until resumed by the host. While suspended no USB traffic to or
* from the device can ocurr (except for Remote Wakeup requests).
*
* This macro returns true if the USB communications have been suspended by the host, false
* otherwise.
*/
#define USB_Device_IsUSBSuspended() ((UDINT & (1 << SUSPI)) ? true : false)
/* Enums: */
/** Enum for the ErrorCode parameter of the USB_DeviceError event.
*
* \see Events.h for more information on this event.
*/
enum USB_Device_ErrorCodes_t
{
DEVICE_ERROR_GetDescriptorNotHooked = 0, /**< Indicates that the GetDescriptor() method
* has not been hooked by the user application.
*
* \see StdDescriptors.h for more information on
* the GetDescriptor() method.
*/
};
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define USB_Device_SetLowSpeed() MACROS{ UDCON |= (1 << LSM); }MACROE
#define USB_Device_SetHighSpeed() MACROS{ UDCON &= ~(1 << LSM); }MACROE
#endif
#endif

View file

@ -0,0 +1,387 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#include "USBMode.h"
#if defined(USB_CAN_BE_DEVICE)
#define INCLUDE_FROM_ENDPOINT_C
#include "Endpoint.h"
#if !defined(FIXED_CONTROL_ENDPOINT_SIZE)
uint8_t USB_ControlEndpointSize = ENDPOINT_CONTROLEP_DEFAULT_SIZE;
#endif
#if !defined(STATIC_ENDPOINT_CONFIGURATION)
bool Endpoint_ConfigureEndpoint(const uint8_t Number, const uint8_t Type, const uint8_t Direction,
const uint16_t Size, const uint8_t Banks)
{
Endpoint_SelectEndpoint(Number);
Endpoint_EnableEndpoint();
UECFG1X = 0;
UECFG0X = ((Type << EPTYPE0) | Direction);
UECFG1X = ((1 << ALLOC) | Banks | Endpoint_BytesToEPSizeMask(Size));
return Endpoint_IsConfigured();
}
#else
bool Endpoint_ConfigureEndpointStatic(const uint8_t Number, const uint8_t UECFG0XData, const uint8_t UECFG1XData)
{
Endpoint_SelectEndpoint(Number);
Endpoint_EnableEndpoint();
UECFG1X = 0;
UECFG0X = UECFG0XData;
UECFG1X = UECFG1XData;
return Endpoint_IsConfigured();
}
#endif
void Endpoint_ClearEndpoints(void)
{
UEINT = 0;
for (uint8_t EPNum = 0; EPNum < ENDPOINT_TOTAL_ENDPOINTS; EPNum++)
{
Endpoint_SelectEndpoint(EPNum);
UEIENX = 0;
UEINTX = 0;
Endpoint_DeallocateMemory();
Endpoint_DisableEndpoint();
}
}
uint8_t Endpoint_WaitUntilReady(void)
{
uint8_t TimeoutMSRem = USB_STREAM_TIMEOUT_MS;
USB_INT_Clear(USB_INT_SOFI);
while (!(Endpoint_ReadWriteAllowed()))
{
if (!(USB_IsConnected))
return ENDPOINT_READYWAIT_DeviceDisconnected;
else if (Endpoint_IsStalled())
return ENDPOINT_READYWAIT_EndpointStalled;
if (USB_INT_HasOccurred(USB_INT_SOFI))
{
USB_INT_Clear(USB_INT_SOFI);
if (!(TimeoutMSRem--))
return ENDPOINT_READYWAIT_Timeout;
}
}
return ENDPOINT_READYWAIT_NoError;
}
uint8_t Endpoint_Discard_Stream(uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t ErrorCode;
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Endpoint_ReadWriteAllowed()))
{
Endpoint_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return ENDPOINT_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
}
Endpoint_Discard_Byte();
}
return ENDPOINT_RWSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Write_Stream_LE(const void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)Buffer;
uint8_t ErrorCode;
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Endpoint_ReadWriteAllowed()))
{
Endpoint_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return ENDPOINT_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
}
Endpoint_Write_Byte(*(DataStream++));
}
return ENDPOINT_RWSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Write_Stream_BE(const void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)(Buffer + Length - 1);
uint8_t ErrorCode;
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Endpoint_ReadWriteAllowed()))
{
Endpoint_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return ENDPOINT_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
}
Endpoint_Write_Byte(*(DataStream--));
}
return ENDPOINT_RWSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Read_Stream_LE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)Buffer;
uint8_t ErrorCode;
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Endpoint_ReadWriteAllowed()))
{
Endpoint_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return ENDPOINT_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
}
*(DataStream++) = Endpoint_Read_Byte();
}
return ENDPOINT_RWSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Read_Stream_BE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)(Buffer + Length - 1);
uint8_t ErrorCode;
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Endpoint_ReadWriteAllowed()))
{
Endpoint_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return ENDPOINT_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Endpoint_WaitUntilReady()))
return ErrorCode;
}
*(DataStream--) = Endpoint_Read_Byte();
}
return ENDPOINT_RWSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Write_Control_Stream_LE(const void* Buffer, uint16_t Length)
{
uint8_t* DataStream = (uint8_t*)Buffer;
bool SendZLP = true;
while (Length && !(Endpoint_IsSetupOUTReceived()))
{
while (!(Endpoint_IsSetupINReady()));
while (Length && (Endpoint_BytesInEndpoint() < USB_ControlEndpointSize))
{
Endpoint_Write_Byte(*(DataStream++));
Length--;
}
SendZLP = (Endpoint_BytesInEndpoint() == USB_ControlEndpointSize);
Endpoint_ClearSetupIN();
}
if (Endpoint_IsSetupOUTReceived())
return ENDPOINT_RWCSTREAM_ERROR_HostAborted;
if (SendZLP)
{
while (!(Endpoint_IsSetupINReady()));
Endpoint_ClearSetupIN();
}
while (!(Endpoint_IsSetupOUTReceived()));
return ENDPOINT_RWCSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Write_Control_Stream_BE(const void* Buffer, uint16_t Length)
{
uint8_t* DataStream = (uint8_t*)(Buffer + Length - 1);
bool SendZLP = true;
while (Length && !(Endpoint_IsSetupOUTReceived()))
{
while (!(Endpoint_IsSetupINReady()));
while (Length && (Endpoint_BytesInEndpoint() < USB_ControlEndpointSize))
{
Endpoint_Write_Byte(*(DataStream--));
Length--;
}
SendZLP = (Endpoint_BytesInEndpoint() == USB_ControlEndpointSize);
Endpoint_ClearSetupIN();
}
if (Endpoint_IsSetupOUTReceived())
return ENDPOINT_RWCSTREAM_ERROR_HostAborted;
if (SendZLP)
{
while (!(Endpoint_IsSetupINReady()));
Endpoint_ClearSetupIN();
}
while (!(Endpoint_IsSetupOUTReceived()));
return ENDPOINT_RWCSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Read_Control_Stream_LE(void* Buffer, uint16_t Length)
{
uint8_t* DataStream = (uint8_t*)Buffer;
while (Length)
{
while (!(Endpoint_IsSetupOUTReceived()));
while (Length && Endpoint_BytesInEndpoint())
{
*(DataStream++) = Endpoint_Read_Byte();
Length--;
}
Endpoint_ClearSetupOUT();
}
while (!(Endpoint_IsSetupINReady()));
return ENDPOINT_RWCSTREAM_ERROR_NoError;
}
uint8_t Endpoint_Read_Control_Stream_BE(void* Buffer, uint16_t Length)
{
uint8_t* DataStream = (uint8_t*)(Buffer + Length - 1);
while (Length)
{
while (!(Endpoint_IsSetupOUTReceived()));
while (Length && Endpoint_BytesInEndpoint())
{
*(DataStream--) = Endpoint_Read_Byte();
Length--;
}
Endpoint_ClearSetupOUT();
}
while (!(Endpoint_IsSetupINReady()));
return ENDPOINT_RWCSTREAM_ERROR_NoError;
}
#endif

View file

@ -0,0 +1,842 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Functions, macros and enums related to endpoint management when in USB Device mode. This
* module contains the endpoint management macros, as well as endpoint interrupt and data
* send/recieve functions for various datatypes.
*/
#ifndef __ENDPOINT_H__
#define __ENDPOINT_H__
/* Includes: */
#include <avr/io.h>
#include <stdbool.h>
#include "../../../Common/Common.h"
#include "../HighLevel/USBTask.h"
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
#include "StreamCallbacks.h"
#endif
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Endpoint data direction mask for Endpoint_ConfigureEndpoint(). This indicates that the endpoint
* should be initialized in the OUT direction - i.e. data flows from host to device.
*/
#define ENDPOINT_DIR_OUT 0
/** Endpoint data direction mask for Endpoint_ConfigureEndpoint(). This indicates that the endpoint
* should be initialized in the IN direction - i.e. data flows from device to host.
*/
#define ENDPOINT_DIR_IN (1 << EPDIR)
/** Mask for the bank mode selection for the Endpoint_ConfigureEndpoint() macro. This indicates
* that the endpoint should have one single bank, which requires less USB FIFO memory but results
* in slower transfers as only one USB device (the AVR or the host) can access the endpoint's
* bank at the one time.
*/
#define ENDPOINT_BANK_SINGLE 0
/** Mask for the bank mode selection for the Endpoint_ConfigureEndpoint() macro. This indicates
* that the endpoint should have two banks, which requires more USB FIFO memory but results
* in faster transfers as one USB device (the AVR or the host) can access one bank while the other
* accesses the second bank.
*/
#define ENDPOINT_BANK_DOUBLE (1 << EPBK0)
/** Endpoint address for the default control endpoint, which always resides in address 0. This is
* defined for convenience to give more readable code when used with the endpoint macros.
*/
#define ENDPOINT_CONTROLEP 0
/** Default size of the default control endpoint's bank, until altered by the Endpoint0Size value
* in the device descriptor. Not available if the FIXED_CONTROL_ENDPOINT_SIZE token is defined.
*/
#if (!defined(FIXED_CONTROL_ENDPOINT_SIZE) || defined(__DOXYGEN__))
#define ENDPOINT_CONTROLEP_DEFAULT_SIZE 8
#endif
/** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
* numerical address in the device.
*/
#define ENDPOINT_EPNUM_MASK 0b111
/** Endpoint bank size mask, for masking against endpoint addresses to retrieve the endpoint's
* bank size in the device.
*/
#define ENDPOINT_EPSIZE_MASK 0x7FF
/** Maximum size in bytes of a given endpoint.
*
* \param n Endpoint number, a value between 0 and (ENDPOINT_TOTAL_ENDPOINTS - 1)
*/
#define ENDPOINT_MAX_SIZE(n) _ENDPOINT_GET_MAXSIZE(n)
/** Indicates if the given endpoint supports double banking.
*
* \param n Endpoint number, a value between 0 and (ENDPOINT_TOTAL_ENDPOINTS - 1)
*/
#define ENDPOINT_DOUBLEBANK_SUPPORTED(n) _ENDPOINT_GET_DOUBLEBANK(n)
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER) || defined(__DOXYGEN__)
/** Total number of endpoints (including the default control endpoint at address 0) which may
* be used in the device. Different USB AVR models support different amounts of endpoints,
* this value reflects the maximum number of endpoints for the currently selected AVR model.
*/
#define ENDPOINT_TOTAL_ENDPOINTS 7
#else
#define ENDPOINT_TOTAL_ENDPOINTS 5
#endif
/** Interrupt definition for the endpoint SETUP interrupt (for CONTROL type endpoints). Should be
* used with the USB_INT_* macros located in USBInterrupt.h.
*
* This interrupt will fire if enabled on a CONTROL type endpoint if a new control packet is
* received from the host.
*/
#define ENDPOINT_INT_SETUP UEIENX, (1 << RXSTPE), UEINTX, (1 << RXSTPI)
/** Interrupt definition for the endpoint IN interrupt (for INTERRUPT type endpoints). Should be
* used with the USB_INT_* macros located in USBInterrupt.h.
*
* This interrupt will fire if enabled on an INTERRUPT type endpoint if a the endpoint interrupt
* period has elapsed and the endpoint is ready for a new packet to be written to its FIFO buffer
* (if required).
*/
#define ENDPOINT_INT_IN UEIENX, (1 << TXINE) , UEINTX, (1 << TXINI)
/** Interrupt definition for the endpoint OUT interrupt (for INTERRUPT type endpoints). Should be
* used with the USB_INT_* macros located in USBInterrupt.h.
*
* This interrupt will fire if enabled on an INTERRUPT type endpoint if a the endpoint interrupt
* period has elapsed and the endpoint is ready for a packet from the host to be read from its
* FIFO buffer (if received).
*/
#define ENDPOINT_INT_OUT UEIENX, (1 << RXOUTE), UEINTX, (1 << RXOUTI)
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER) || defined(__DOXYGEN__)
/** Indicates the number of bytes currently stored in the current endpoint's selected bank. */
#define Endpoint_BytesInEndpoint() UEBCX
#else
#define Endpoint_BytesInEndpoint() UEBCLX
#endif
/** Returns the endpoint address of the currently selected endpoint. This is typically used to save
* the currently selected endpoint number so that it can be restored after another endpoint has
* been manipulated.
*/
#define Endpoint_GetCurrentEndpoint() (UENUM & ENDPOINT_EPNUM_MASK)
/** Selects the given endpoint number. If the address from the device descriptors is used, the
* value should be masked with the ENDPOINT_EPNUM_MASK constant to extract only the endpoint
* number (and discarding the endpoint direction bit).
*
* Any endpoint operations which do not require the endpoint number to be indicated will operate on
* the currently selected endpoint.
*/
#define Endpoint_SelectEndpoint(epnum) MACROS{ UENUM = epnum; }MACROE
/** Resets the endpoint bank FIFO. This clears all the endpoint banks and resets the USB controller's
* In and Out pointers to the bank's contents.
*/
#define Endpoint_ResetFIFO(epnum) MACROS{ UERST = (1 << epnum); UERST = 0; }MACROE
/** Enables the currently selected endpoint so that data can be sent and received through it to
* and from a host.
*
* \note Endpoints must first be configured properly rather than just being enabled via the
* Endpoint_ConfigureEndpoint() macro, which calls Endpoint_EnableEndpoint() automatically.
*/
#define Endpoint_EnableEndpoint() MACROS{ UECONX |= (1 << EPEN); }MACROE
/** Disables the currently selected endpoint so that data cannot be sent and received through it
* to and from a host.
*/
#define Endpoint_DisableEndpoint() MACROS{ UECONX &= ~(1 << EPEN); }MACROE
/** Returns true if the currently selected endpoint is enabled, false otherwise. */
#define Endpoint_IsEnabled() ((UECONX & (1 << EPEN)) ? true : false)
/** Returns true if the currently selected endpoint may be read from (if data is waiting in the endpoint
* bank and the endpoint is an OUT direction, or if the bank is not yet full if the endpoint is an
* IN direction). This function will return false if an error has occured in the endpoint, or if
* the endpoint is an OUT direction and no packet has been received, or if the endpoint is an IN
* direction and the endpoint bank is full.
*/
#define Endpoint_ReadWriteAllowed() ((UEINTX & (1 << RWAL)) ? true : false)
/** Returns true if the currently selected endpoint is configured, false otherwise. */
#define Endpoint_IsConfigured() ((UESTA0X & (1 << CFGOK)) ? true : false)
/** Returns a mask indicating which INTERRUPT type endpoints have interrupted - i.e. their
* interrupt duration has elapsed. Which endpoints have interrupted can be determined by
* masking the return value against (1 << {Endpoint Number}).
*/
#define Endpoint_GetEndpointInterrupts() UEINT
/** Clears the endpoint interrupt flag. This clears the specified endpoint number's interrupt
* mask in the endpoint interrupt flag register.
*/
#define Endpoint_ClearEndpointInterrupt(n) MACROS{ UEINT &= ~(1 << n); }MACROE
/** Returns true if the specified endpoint number has interrupted (valid only for INTERRUPT type
* endpoints), false otherwise.
*/
#define Endpoint_HasEndpointInterrupted(n) ((UEINT & (1 << n)) ? true : false)
/** Clears the currently selected endpoint bank, and switches to the alternate bank if the currently
* selected endpoint is dual-banked. When cleared, this either frees the bank up for the next packet
* from the host (if the endpoint is of the OUT direction) or sends the packet contents to the host
* (if the endpoint is of the IN direction).
*/
#define Endpoint_ClearCurrentBank() MACROS{ UEINTX &= ~(1 << FIFOCON); }MACROE
/** Returns true if the current CONTROL type endpoint is ready for an IN packet, false otherwise. */
#define Endpoint_IsSetupINReady() ((UEINTX & (1 << TXINI)) ? true : false)
/** Returns true if the current CONTROL type endpoint is ready for an OUT packet, false otherwise. */
#define Endpoint_IsSetupOUTReceived() ((UEINTX & (1 << RXOUTI)) ? true : false)
/** Returns true if the current CONTROL type endpoint is ready for a SETUP packet, false otherwise. */
#define Endpoint_IsSetupReceived() ((UEINTX & (1 << RXSTPI)) ? true : false)
/** Clears a received SETUP packet on the currently selected CONTROL type endpoint. */
#define Endpoint_ClearSetupReceived() MACROS{ UEINTX &= ~(1 << RXSTPI); }MACROE
/** Sends an IN packet to the host on the currently selected CONTROL type endpoint. */
#define Endpoint_ClearSetupIN() MACROS{ UEINTX &= ~(1 << TXINI); }MACROE
/** Acknowedges an OUT packet to the host on the currently selected CONTROL type endpoint, freeing
* up the endpoint for the next packet.
*/
#define Endpoint_ClearSetupOUT() MACROS{ UEINTX &= ~(1 << RXOUTI); }MACROE
/** Stalls the current endpoint, indicating to the host that a logical problem occured with the
* indicated endpoint and that the current transfer sequence should be aborted. This provides a
* way for devices to indicate invalid commands to the host so that the current transfer can be
* aborted and the host can begin its own recovery seqeuence.
*
* The currently selected endpoint remains stalled until either the Endpoint_ClearStall() macro
* is called, or the host issues a CLEAR FEATURE request to the device for the currently selected
* endpoint.
*/
#define Endpoint_StallTransaction() MACROS{ UECONX |= (1 << STALLRQ); }MACROE
/** Clears the stall on the currently selected endpoint. */
#define Endpoint_ClearStall() MACROS{ UECONX |= (1 << STALLRQC); }MACROE
/** Returns true if the currently selected endpoint is stalled, false othewise. */
#define Endpoint_IsStalled() ((UECONX & (1 << STALLRQ)) ? true : false)
/** Resets the data toggle of the currently selected endpoint. */
#define Endpoint_ResetDataToggle() MACROS{ UECONX |= (1 << RSTDT); }MACROE
/* Enums: */
/** Enum for the possible error return codes of the Endpoint_WaitUntilReady function */
enum Endpoint_WaitUntilReady_ErrorCodes_t
{
ENDPOINT_READYWAIT_NoError = 0, /**< Endpoint is ready for next packet, no error. */
ENDPOINT_READYWAIT_EndpointStalled = 1, /**< The endpoint was stalled during the stream
* transfer by the host or device.
*/
ENDPOINT_READYWAIT_DeviceDisconnected = 2, /**< Device was disconnected from the host while
* waiting for the endpoint to become ready.
*/
ENDPOINT_READYWAIT_Timeout = 3, /**< The host failed to accept or send the next packet
* within the software timeout period set by the
* USB_STREAM_TIMEOUT_MS macro.
*/
};
/** Enum for the possible error return codes of the Endpoint_*_Stream_* functions. */
enum Endpoint_Stream_RW_ErrorCodes_t
{
ENDPOINT_RWSTREAM_ERROR_NoError = 0, /**< Command completed successfully, no error. */
ENDPOINT_RWSTREAM_ERROR_EndpointStalled = 1, /**< The endpoint was stalled during the stream
* transfer by the host or device.
*/
ENDPOINT_RWSTREAM_ERROR_DeviceDisconnected = 1, /**< Device was disconnected from the host during
* the transfer.
*/
ENDPOINT_RWSTREAM_ERROR_Timeout = 2, /**< The host failed to accept or send the next packet
* within the software timeout period set by the
* USB_STREAM_TIMEOUT_MS macro.
*/
ENDPOINT_RWSTREAM_ERROR_CallbackAborted = 3, /**< Indicates that the stream's callback function
* aborted the transfer early.
*/
};
/** Enum for the possible error return codes of the Endpoint_*_Control_Stream_* functions. */
enum Endpoint_ControlStream_RW_ErrorCodes_t
{
ENDPOINT_RWCSTREAM_ERROR_NoError = 0, /**< Command completed successfully, no error. */
ENDPOINT_RWCSTREAM_ERROR_HostAborted = 1, /**< The aborted the transfer prematurely. */
};
/* Inline Functions: */
/** Reads one byte from the currently selected endpoint's bank, for OUT direction endpoints. */
static inline uint8_t Endpoint_Read_Byte(void) ATTR_WARN_UNUSED_RESULT;
static inline uint8_t Endpoint_Read_Byte(void)
{
return UEDATX;
}
/** Writes one byte from the currently selected endpoint's bank, for IN direction endpoints. */
static inline void Endpoint_Write_Byte(const uint8_t Byte)
{
UEDATX = Byte;
}
/** Discards one byte from the currently selected endpoint's bank, for OUT direction endpoints. */
static inline void Endpoint_Discard_Byte(void)
{
uint8_t Dummy;
Dummy = UEDATX;
}
/** Reads two bytes from the currently selected endpoint's bank in little endian format, for OUT
* direction endpoints.
*/
static inline uint16_t Endpoint_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint16_t Endpoint_Read_Word_LE(void)
{
uint16_t Data;
Data = UEDATX;
Data |= (((uint16_t)UEDATX) << 8);
return Data;
}
/** Reads two bytes from the currently selected endpoint's bank in big endian format, for OUT
* direction endpoints.
*/
static inline uint16_t Endpoint_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint16_t Endpoint_Read_Word_BE(void)
{
uint16_t Data;
Data = (((uint16_t)UEDATX) << 8);
Data |= UEDATX;
return Data;
}
/** Writes two bytes to the currently selected endpoint's bank in little endian format, for IN
* direction endpoints.
*/
static inline void Endpoint_Write_Word_LE(const uint16_t Word)
{
UEDATX = (Word & 0xFF);
UEDATX = (Word >> 8);
}
/** Writes two bytes to the currently selected endpoint's bank in big endian format, for IN
* direction endpoints.
*/
static inline void Endpoint_Write_Word_BE(const uint16_t Word)
{
UEDATX = (Word >> 8);
UEDATX = (Word & 0xFF);
}
/** Discards two bytes from the currently selected endpoint's bank, for OUT direction endpoints. */
static inline void Endpoint_Discard_Word(void)
{
uint8_t Dummy;
Dummy = UEDATX;
Dummy = UEDATX;
}
/** Reads four bytes from the currently selected endpoint's bank in little endian format, for OUT
* direction endpoints.
*/
static inline uint32_t Endpoint_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint32_t Endpoint_Read_DWord_LE(void)
{
union
{
uint32_t DWord;
uint8_t Bytes[4];
} Data;
Data.Bytes[0] = UEDATX;
Data.Bytes[1] = UEDATX;
Data.Bytes[2] = UEDATX;
Data.Bytes[3] = UEDATX;
return Data.DWord;
}
/** Reads four bytes from the currently selected endpoint's bank in big endian format, for OUT
* direction endpoints.
*/
static inline uint32_t Endpoint_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint32_t Endpoint_Read_DWord_BE(void)
{
union
{
uint32_t DWord;
uint8_t Bytes[4];
} Data;
Data.Bytes[3] = UEDATX;
Data.Bytes[2] = UEDATX;
Data.Bytes[1] = UEDATX;
Data.Bytes[0] = UEDATX;
return Data.DWord;
}
/** Writes four bytes to the currently selected endpoint's bank in little endian format, for IN
* direction endpoints.
*/
static inline void Endpoint_Write_DWord_LE(const uint32_t DWord)
{
Endpoint_Write_Word_LE(DWord);
Endpoint_Write_Word_LE(DWord >> 16);
}
/** Writes four bytes to the currently selected endpoint's bank in big endian format, for IN
* direction endpoints.
*/
static inline void Endpoint_Write_DWord_BE(const uint32_t DWord)
{
Endpoint_Write_Word_BE(DWord >> 16);
Endpoint_Write_Word_BE(DWord);
}
/** Discards four bytes from the currently selected endpoint's bank, for OUT direction endpoints. */
static inline void Endpoint_Discard_DWord(void)
{
uint8_t Dummy;
Dummy = UEDATX;
Dummy = UEDATX;
Dummy = UEDATX;
Dummy = UEDATX;
}
/* External Variables: */
/** Global indicating the maximum packet size of the default control endpoint located at address
* 0 in the device. This value is set to the value indicated in the device descriptor in the user
* project once the USB interface is initialized into device mode.
*
* If space is an issue, it is possible to fix this to a static value by defining the control
* endpoint size in the FIXED_CONTROL_ENDPOINT_SIZE token passed to the compiler in the makefile
* via the -D switch. When a fixed control endpoint size is used, the size is no longer dynamically
* read from the descriptors at runtime and instead fixed to the given value. When used, it is
* important that the descriptor control endpoint size value matches the size given as the
* FIXED_CONTROL_ENDPOINT_SIZE token - it is recommended that the FIXED_CONTROL_ENDPOINT_SIZE token
* be used in the descriptors to ensure this.
*
* \note This variable should be treated as read-only in the user application, and never manually
* changed in value.
*/
#if (!defined(FIXED_CONTROL_ENDPOINT_SIZE) || defined(__DOXYGEN__))
extern uint8_t USB_ControlEndpointSize;
#else
#define USB_ControlEndpointSize FIXED_CONTROL_ENDPOINT_SIZE
#endif
/* Function Prototypes: */
/** Configures the specified endpoint number with the given endpoint type, direction, bank size
* and banking mode. Endpoints should be allocated in ascending order by their address in the
* device (i.e. endpoint 1 should be configured before endpoint 2 and so on).
*
* The endpoint type may be one of the EP_TYPE_* macros listed in LowLevel.h and the direction
* may be either ENDPOINT_DIR_OUT or ENDPOINT_DIR_IN.
*
* The bank size must indicate the maximum packet size that the endpoint can handle. Different
* endpoint numbers can handle different maximum packet sizes - refer to the chosen USB AVR's
* datasheet to determine the maximum bank size for each endpoint.
*
* The banking mode may be either ENDPOINT_BANK_SINGLE or ENDPOINT_BANK_DOUBLE.
*
* The success of this routine can be determined via the Endpoint_IsConfigured() macro.
*
* By default, the routine is entirely dynamic, and will accept both constant and variable inputs.
* If dynamic configuration is unused, a small space savings can be made by defining the
* STATIC_ENDPOINT_CONFIGURATION macro via the -D switch to the compiler, to optimize for constant
* input values.
*
* \note This routine will select the specified endpoint, and the endpoint will remain selected
* once the routine completes regardless of if the endpoint configuration succeeds.
*
* \return Boolean true if the configuration succeeded, false otherwise
*/
bool Endpoint_ConfigureEndpoint(const uint8_t Number, const uint8_t Type, const uint8_t Direction,
const uint16_t Size, const uint8_t Banks);
/** Spinloops until the currently selected non-control endpoint is ready for the next packet of data
* to be read or written to it.
*
* \note This routine should not be called on CONTROL type endpoints.
*
* \return A value from the Endpoint_WaitUntilReady_ErrorCodes_t enum.
*/
uint8_t Endpoint_WaitUntilReady(void);
/** Reads and discards the given number of bytes from the endpoint from the given buffer,
* discarding fully read packets from the host as needed. The last packet is not automatically
* discarded once the remaining bytes has been read; the user is responsible for manually
* discarding the last packet from the host via the Endpoint_ClearCurrentBank() macro. Between
* each USB packet, the given stream callback function is executed repeatedly until the next
* packet is ready, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \note This routine should not be used on CONTROL type endpoints.
*
* \param Length Number of bytes to send via the currently selected endpoint.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Endpoint_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Discard_Stream(uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
);
/** Writes the given number of bytes to the endpoint from the given buffer in little endian,
* sending full packets to the host as needed. The last packet filled is not automatically sent;
* the user is responsible for manually sending the last written packet to the host via the
* Endpoint_ClearCurrentBank() macro. Between each USB packet, the given stream callback function
* is executed repeatedly until the endpoint is ready to accept the next packet, allowing for early
* aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \note This routine should not be used on CONTROL type endpoints.
*
* \param Buffer Pointer to the source data buffer to read from.
* \param Length Number of bytes to read for the currently selected endpoint into the buffer.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Endpoint_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Write_Stream_LE(const void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Writes the given number of bytes to the endpoint from the given buffer in big endian,
* sending full packets to the host as needed. The last packet filled is not automatically sent;
* the user is responsible for manually sending the last written packet to the host via the
* Endpoint_ClearCurrentBank() macro. Between each USB packet, the given stream callback function
* is executed repeatedly until the endpoint is ready to accept the next packet, allowing for early
* aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \note This routine should not be used on CONTROL type endpoints.
*
* \param Buffer Pointer to the source data buffer to read from.
* \param Length Number of bytes to read for the currently selected endpoint into the buffer.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Endpoint_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Write_Stream_BE(const void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Reads the given number of bytes from the endpoint from the given buffer in little endian,
* discarding fully read packets from the host as needed. The last packet is not automatically
* discarded once the remaining bytes has been read; the user is responsible for manually
* discarding the last packet from the host via the Endpoint_ClearCurrentBank() macro. Between
* each USB packet, the given stream callback function is executed repeatedly until the endpoint
* is ready to accept the next packet, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \note This routine should not be used on CONTROL type endpoints.
*
* \param Buffer Pointer to the destination data buffer to write to.
* \param Length Number of bytes to send via the currently selected endpoint.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Endpoint_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Read_Stream_LE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Reads the given number of bytes from the endpoint from the given buffer in big endian,
* discarding fully read packets from the host as needed. The last packet is not automatically
* discarded once the remaining bytes has been read; the user is responsible for manually
* discarding the last packet from the host via the Endpoint_ClearCurrentBank() macro. Between
* each USB packet, the given stream callback function is executed repeatedly until the endpoint
* is ready to accept the next packet, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \note This routine should not be used on CONTROL type endpoints.
*
* \param Buffer Pointer to the destination data buffer to write to.
* \param Length Number of bytes to send via the currently selected endpoint.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Endpoint_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Read_Stream_BE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Writes the given number of bytes to the CONTROL type endpoint from the given buffer in little endian,
* sending full packets to the host as needed. The host OUT acknowedgement is not automatically cleared
* in both failure and success states; the user is responsible for manually clearing the setup OUT to
* finalize the transfer via the Endpoint_ClearSetupOUT() macro.
*
* \note This routine should only be used on CONTROL type endpoints.
*
* \warning Unlike the standard stream read/write commands, the control stream commands cannot be chained
* together; i.e. the entire stream data must be read or written at the one time.
*
* \param Buffer Pointer to the source data buffer to read from.
* \param Length Number of bytes to read for the currently selected endpoint into the buffer.
*
* \return A value from the Endpoint_ControlStream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Write_Control_Stream_LE(const void* Buffer, uint16_t Length) ATTR_NON_NULL_PTR_ARG(1);
/** Writes the given number of bytes to the CONTROL type endpoint from the given buffer in big endian,
* sending full packets to the host as needed. The host OUT acknowedgement is not automatically cleared
* in both failure and success states; the user is responsible for manually clearing the setup OUT to
* finalize the transfer via the Endpoint_ClearSetupOUT() macro.
*
* \note This routine should only be used on CONTROL type endpoints.
*
* \warning Unlike the standard stream read/write commands, the control stream commands cannot be chained
* together; i.e. the entire stream data must be read or written at the one time.
*
* \param Buffer Pointer to the source data buffer to read from.
* \param Length Number of bytes to read for the currently selected endpoint into the buffer.
*
* \return A value from the Endpoint_ControlStream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Write_Control_Stream_BE(const void* Buffer, uint16_t Length) ATTR_NON_NULL_PTR_ARG(1);
/** Reads the given number of bytes from the CONTROL endpoint from the given buffer in little endian,
* discarding fully read packets from the host as needed. The device IN acknowedgement is not
* automatically sent after success or failure states; the user is responsible for manually sending the
* setup IN to finalize the transfer via the Endpoint_ClearSetupIN() macro.
*
* \note This routine should only be used on CONTROL type endpoints.
*
* \warning Unlike the standard stream read/write commands, the control stream commands cannot be chained
* together; i.e. the entire stream data must be read or written at the one time.
*
* \param Buffer Pointer to the destination data buffer to write to.
* \param Length Number of bytes to send via the currently selected endpoint.
*
* \return A value from the Endpoint_ControlStream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Read_Control_Stream_LE(void* Buffer, uint16_t Length) ATTR_NON_NULL_PTR_ARG(1);
/** Reads the given number of bytes from the CONTROL endpoint from the given buffer in big endian,
* discarding fully read packets from the host as needed. The device IN acknowedgement is not
* automatically sent after success or failure states; the user is responsible for manually sending the
* setup IN to finalize the transfer via the Endpoint_ClearSetupIN() macro.
*
* \note This routine should only be used on CONTROL type endpoints.
*
* \warning Unlike the standard stream read/write commands, the control stream commands cannot be chained
* together; i.e. the entire stream data must be read or written at the one time.
*
* \param Buffer Pointer to the destination data buffer to write to.
* \param Length Number of bytes to send via the currently selected endpoint.
*
* \return A value from the Endpoint_ControlStream_RW_ErrorCodes_t enum.
*/
uint8_t Endpoint_Read_Control_Stream_BE(void* Buffer, uint16_t Length) ATTR_NON_NULL_PTR_ARG(1);
/* Function Aliases: */
/** Alias for Endpoint_Discard_Byte().
*/
#define Endpoint_Ignore_Byte() Endpoint_Discard_Byte()
/** Alias for Endpoint_Discard_Word().
*/
#define Endpoint_Ignore_Word() Endpoint_Discard_Word()
/** Alias for Endpoint_Discard_DWord().
*/
#define Endpoint_Ignore_DWord() Endpoint_Discard_DWord()
/** Alias for Endpoint_Read_Word_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Endpoint_Read_Word() Endpoint_Read_Word_LE()
/** Alias for Endpoint_Write_Word_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Endpoint_Write_Word(Word) Endpoint_Write_Word_LE(Word)
/** Alias for Endpoint_Read_DWord_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Endpoint_Read_DWord() Endpoint_Read_DWord_LE()
/** Alias for Endpoint_Write_DWord_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Endpoint_Write_DWord(DWord) Endpoint_Write_DWord_LE(DWord)
/** Alias for Endpoint_Read_Stream_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#if !defined(NO_STREAM_CALLBACKS)
#define Endpoint_Read_Stream(Buffer, Length, Callback) Endpoint_Read_Stream_LE(Buffer, Length, Callback)
#else
#define Endpoint_Read_Stream(Buffer, Length) Endpoint_Read_Stream_LE(Buffer, Length)
#endif
/** Alias for Endpoint_Write_Stream_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#if !defined(NO_STREAM_CALLBACKS)
#define Endpoint_Write_Stream(Buffer, Length, Callback) Endpoint_Write_Stream_LE(Buffer, Length, Callback)
#else
#define Endpoint_Write_Stream(Buffer, Length) Endpoint_Write_Stream_LE(Buffer, Length)
#endif
/** Alias for Endpoint_Read_Control_Stream_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Endpoint_Read_Control_Stream(Data, Length) Endpoint_Read_Control_Stream_LE(Data, Length)
/** Alias for Endpoint_Write_Control_Stream_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Endpoint_Write_Control_Stream(Data, Length) Endpoint_Write_Control_Stream_LE(Data, Length)
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define Endpoint_AllocateMemory() MACROS{ UECFG1X |= (1 << ALLOC); }MACROE
#define Endpoint_DeallocateMemory() MACROS{ UECFG1X &= ~(1 << ALLOC); }MACROE
#define _ENDPOINT_GET_MAXSIZE(n) _ENDPOINT_GET_MAXSIZE2(ENDPOINT_DETAILS_EP ## n)
#define _ENDPOINT_GET_MAXSIZE2(details) _ENDPOINT_GET_MAXSIZE3(details)
#define _ENDPOINT_GET_MAXSIZE3(maxsize, db) maxsize
#define _ENDPOINT_GET_DOUBLEBANK(n) _ENDPOINT_GET_DOUBLEBANK2(ENDPOINT_DETAILS_EP ## n)
#define _ENDPOINT_GET_DOUBLEBANK2(details) _ENDPOINT_GET_DOUBLEBANK3(details)
#define _ENDPOINT_GET_DOUBLEBANK3(maxsize, db) db
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER)
#define ENDPOINT_DETAILS_EP0 64, true
#define ENDPOINT_DETAILS_EP1 256, true
#define ENDPOINT_DETAILS_EP2 64, true
#define ENDPOINT_DETAILS_EP3 64, true
#define ENDPOINT_DETAILS_EP4 64, true
#define ENDPOINT_DETAILS_EP5 64, true
#define ENDPOINT_DETAILS_EP6 64, true
#else
#define ENDPOINT_DETAILS_EP0 64, true
#define ENDPOINT_DETAILS_EP1 64, false
#define ENDPOINT_DETAILS_EP2 64, false
#define ENDPOINT_DETAILS_EP3 64, true
#define ENDPOINT_DETAILS_EP4 64, true
#endif
#if defined(STATIC_ENDPOINT_CONFIGURATION)
#define Endpoint_ConfigureEndpoint(Number, Type, Direction, Size, Banks) \
Endpoint_ConfigureEndpointStatic(Number, \
((Type << EPTYPE0) | Direction), \
((1 << ALLOC) | Banks | Endpoint_BytesToEPSizeMask(Size)));
#endif
/* Function Prototypes: */
void Endpoint_ClearEndpoints(void);
bool Endpoint_ConfigureEndpointStatic(const uint8_t Number, const uint8_t UECFG0XData, const uint8_t UECFG1XData);
/* Inline Functions: */
static inline uint8_t Endpoint_BytesToEPSizeMask(const uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYSINLINE;
static inline uint8_t Endpoint_BytesToEPSizeMask(const uint16_t Bytes)
{
if (Bytes <= 8)
return (0 << EPSIZE0);
else if (Bytes <= 16)
return (1 << EPSIZE0);
else if (Bytes <= 32)
return (2 << EPSIZE0);
#if defined(USB_LIMITED_CONTROLLER)
else
return (3 << EPSIZE0);
#else
else if (Bytes <= 64)
return (3 << EPSIZE0);
else if (Bytes <= 128)
return (4 << EPSIZE0);
else
return (5 << EPSIZE0);
#endif
};
#endif
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,115 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#include "USBMode.h"
#if defined(USB_CAN_BE_HOST)
#include "Host.h"
uint8_t USB_Host_WaitMS(uint8_t MS)
{
bool BusSuspended = USB_Host_IsBusSuspended();
uint8_t ErrorCode = HOST_WAITERROR_Successful;
USB_INT_Clear(USB_INT_HSOFI);
USB_Host_ResumeBus();
while (MS)
{
if (USB_INT_HasOccurred(USB_INT_HSOFI))
{
USB_INT_Clear(USB_INT_HSOFI);
MS--;
}
if ((USB_IsConnected == false) || (USB_CurrentMode == USB_MODE_DEVICE))
{
ErrorCode = HOST_WAITERROR_DeviceDisconnect;
break;
}
if (Pipe_IsError() == true)
{
Pipe_ClearError();
ErrorCode = HOST_WAITERROR_PipeError;
break;
}
if (Pipe_IsStalled() == true)
{
Pipe_ClearStall();
ErrorCode = HOST_WAITERROR_SetupStalled;
break;
}
}
if (BusSuspended)
USB_Host_SuspendBus();
return ErrorCode;
}
void USB_Host_ResetDevice(void)
{
bool BusSuspended = USB_Host_IsBusSuspended();
USB_INT_Disable(USB_INT_DDISCI);
USB_Host_ResetBus();
while (!(USB_Host_IsResetBusDone()));
USB_INT_Clear(USB_INT_HSOFI);
USB_Host_ResumeBus();
for (uint8_t MSRem = 10; MSRem != 0; MSRem--)
{
/* Workaround for powerless-pullup devices. After a USB bus reset,
all disconnection interrupts are supressed while a USB frame is
looked for - if it is found within 10ms, the device is still
present. */
if (USB_INT_HasOccurred(USB_INT_HSOFI))
{
USB_INT_Clear(USB_INT_DDISCI);
break;
}
_delay_ms(1);
}
if (BusSuspended)
USB_Host_SuspendBus();
USB_INT_Enable(USB_INT_DDISCI);
}
#endif

View file

@ -0,0 +1,245 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Host mode related macros and enums. This module contains macros and enums which are used when
* the USB controller is initialized in host mode.
*/
#ifndef __USBHOST_H__
#define __USBHOST_H__
/* Includes: */
#include <avr/io.h>
#include <stdbool.h>
#include <util/delay.h>
#include "../../../Common/Common.h"
#include "../HighLevel/USBInterrupt.h"
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Indicates the fixed USB device address which any attached device is enumerated to when in
* host mode. As only one USB device may be attached to the AVR in host mode at any one time
* and that the address used is not important (other than the fact that it is non-zero), a
* fixed value is specified by the library.
*/
#define USB_HOST_DEVICEADDRESS 1
#if !defined(USB_HOST_TIMEOUT_MS) || defined(__DOXYGEN__)
/** Constant for the maximum software timeout period of sent USB control transactions to an attached
* device. If a device fails to respond to a sent control request within this period, the
* library will return a timeout error code.
*
* This value may be overridden in the user project makefile as the value of the
* USB_HOST_TIMEOUT_MS token, and passed to the compiler using the -D switch.
*/
#define USB_HOST_TIMEOUT_MS 1000
#endif
#if !defined(HOST_DEVICE_SETTLE_DELAY_MS) || defined(__DOXYGEN__)
/** Constant for the delay in milliseconds after a device is connected before the library
* will start the enumeration process. Some devices require a delay of up to 5 seconds
* after connection before the enumeration process can start or incorrect operation will
* occur.
*
* This value may be overridden in the user project makefile as the value of the
* HOST_DEVICE_SETTLE_DELAY_MS token, and passed to the compiler using the -D switch.
*/
#define HOST_DEVICE_SETTLE_DELAY_MS 1500
#endif
/** Resets the USB bus, including the endpoints in any attached device and pipes on the AVR host.
* USB bus resets leave the default control pipe configured (if already configured).
*
* If the USB bus has been suspended prior to issuing a bus reset, the attached device will be
* woken up automatically and the bus resumed after the reset has been correctly issued.
*/
#define USB_Host_ResetBus() MACROS{ UHCON |= (1 << RESET); }MACROE
/** Determines if a previously issued bus reset (via the USB_Host_ResetBus() macro) has
* completed. This macro returns true if no bus reset is currently being sent, false
* otherwise.
*/
#define USB_Host_IsResetBusDone() ((UHCON & (1 << RESET)) ? false : true)
/** Resumes USB communications with an attached and enumerated device, by resuming the transmission
* of the 1MS Start Of Frame messages to the device. When resumed, USB communications between the
* host and attached device may occur.
*/
#define USB_Host_ResumeBus() MACROS{ UHCON |= (1 << SOFEN); }MACROE
/** Suspends the USB bus, preventing any communications from occuring between the host and attached
* device until the bus has been resumed. This stops the transmission of the 1MS Start Of Frame
* messages to the device.
*/
#define USB_Host_SuspendBus() MACROS{ UHCON &= ~(1 << SOFEN); }MACROE
/** Returns true if the USB bus has been suspended via the use of the USB_Host_SuspendBus() macro,
* false otherwise. While suspended, no USB communications can occur until the bus is resumed,
* except for the Remote Wakeup event from the device if supported.
*/
#define USB_Host_IsBusSuspended() ((UHCON & (1 << SOFEN)) ? false : true)
/** Returns true if the attached device is currently enumerated in Full Speed mode (12Mb/s), or
* false if the attached device is enumerated in Low Speed mode (1.5Mb/s).
*/
#define USB_Host_IsDeviceFullSpeed() ((USBSTA & (1 << SPEED)) ? true : false)
/** Returns true if the attached device is currently issuing a Remote Wakeup request, requesting
* that the host resume the USB bus and wake up the device, false otherwise.
*/
#define USB_Host_IsRemoteWakeupSent() ((UHINT & (1 << RXRSMI)) ? true : false)
/** Clears the flag indicating that a Remote Wakeup request has been issued by an attached
* device.
*/
#define USB_Host_ClearRemoteWakeupSent() MACROS{ UHINT &= ~(1 << RXRSMI); }MACROE
/** Accepts a Remote Wakeup request from an attached device. This must be issued in response to
* a device's Remote Wakeup request within 2ms for the request to be accepted and the bus to
* be resumed.
*/
#define USB_Host_ResumeFromWakeupRequest() MACROS{ UHCON |= (1 << RESUME); }MACROE
/** Returns true if no resume from Remote Wakeup request is currently being sent to an attached
* device, false otherwise.
*/
#define USB_Host_IsResumeFromWakeupRequestSent() ((UHCON & (1 << RESUME)) ? false : true)
/* Enums: */
/** Enum for the various states of the USB Host state machine. Only some states are
* implemented in the LUFA library - other states are left to the user to implement.
*
* For information on each state, refer to the USB 2.0 specification. Some states have
*
* \see USBTask.h for information on the global variable USB_HostState, which stores the
* current host state machine state.
*/
enum USB_Host_States_t
{
HOST_STATE_WaitForDevice = 0, /**< Internally implemented by the library. */
HOST_STATE_Unattached = 1, /**< Internally implemented by the library. */
HOST_STATE_Attached = 2, /**< Internally implemented by the library. */
HOST_STATE_Attached_WaitForDeviceSettle = 3, /**< Internally implemented by the library. */
HOST_STATE_Attached_WaitForConnect = 4, /**< Internally implemented by the library. */
HOST_STATE_Attached_DoReset = 5, /**< Internally implemented by the library. */
HOST_STATE_Powered = 6, /**< Internally implemented by the library. */
HOST_STATE_Default = 7, /**< Internally implemented by the library. */
HOST_STATE_Default_PostReset = 8, /**< Internally implemented by the library. */
HOST_STATE_Default_PostAddressSet = 9, /**< Internally implemented by the library. */
HOST_STATE_Addressed = 10, /**< May be implemented by the user project. */
HOST_STATE_Configured = 11, /**< May be implemented by the user project. */
HOST_STATE_Ready = 12, /**< May be implemented by the user project. */
HOST_STATE_Suspended = 13, /**< May be implemented by the user project. */
};
/** Enum for the error codes for the USB_HostError event.
*
* \see Events.h for more information on this event.
*/
enum USB_Host_ErrorCodes_t
{
HOST_ERROR_VBusVoltageDip = 0, /**< VBUS voltage dipped to an unacceptable level. This
* error may be the result of an attached device drawing
* too much current from the VBUS line, or due to the
* AVR's power source being unable to supply sufficient
* current.
*/
};
/** Enum for the error codes for the USB_DeviceEnumerationFailed event.
*
* \see Events.h for more information on this event.
*/
enum USB_Host_EnumerationErrorCodes_t
{
HOST_ENUMERROR_NoError = 0, /**< No error occurred. Used internally, this is not a valid
* ErrorCode parameter value for the USB_DeviceEnumerationFailed
* event.
*/
HOST_ENUMERROR_WaitStage = 1, /**< One of the delays between enumeration steps failed
* to complete successfuly, due to a timeout or other
* error.
*/
HOST_ENUMERROR_NoDeviceDetected = 2, /**< No device was detected, despite the USB data lines
* indicating the attachment of a device.
*/
HOST_ENUMERROR_ControlError = 3, /**< One of the enumeration control requests failed to
* complete successfuly.
*/
HOST_ENUMERROR_PipeConfigError = 4, /**< The default control pipe (address 0) failed to
* configure correctly.
*/
};
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define USB_Host_HostMode_On() MACROS{ USBCON |= (1 << HOST); }MACROE
#define USB_Host_HostMode_Off() MACROS{ USBCON &= ~(1 << HOST); }MACROE
#define USB_Host_VBUS_Auto_Enable() MACROS{ OTGCON &= ~(1 << VBUSHWC); UHWCON |= (1 << UVCONE); }MACROE
#define USB_Host_VBUS_Manual_Enable() MACROS{ OTGCON |= (1 << VBUSHWC); UHWCON &= ~(1 << UVCONE); DDRE |= (1 << 7); }MACROE
#define USB_Host_VBUS_Auto_On() MACROS{ OTGCON |= (1 << VBUSREQ); }MACROE
#define USB_Host_VBUS_Manual_On() MACROS{ PORTE |= (1 << 7); }MACROE
#define USB_Host_VBUS_Auto_Off() MACROS{ OTGCON |= (1 << VBUSRQC); }MACROE
#define USB_Host_VBUS_Manual_Off() MACROS{ PORTE &= ~(1 << 7); }MACROE
#define USB_Host_SetDeviceAddress(addr) MACROS{ UHADDR = (addr & 0b01111111); }MACROE
/* Enums: */
enum USB_Host_WaitMSErrorCodes_t
{
HOST_WAITERROR_Successful = 0,
HOST_WAITERROR_DeviceDisconnect = 1,
HOST_WAITERROR_PipeError = 2,
HOST_WAITERROR_SetupStalled = 3,
};
/* Function Prototypes: */
uint8_t USB_Host_WaitMS(uint8_t MS);
void USB_Host_ResetDevice(void);
#endif
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,178 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#include "USBMode.h"
#if defined(USB_CAN_BE_HOST)
#define INCLUDE_FROM_HOSTCHAPTER9_C
#include "HostChapter9.h"
USB_Host_Request_Header_t USB_HostRequest;
uint8_t USB_Host_SendControlRequest(void* BufferPtr)
{
uint8_t* HeaderStream = (uint8_t*)&USB_HostRequest;
uint8_t* DataStream = (uint8_t*)BufferPtr;
bool BusSuspended = USB_Host_IsBusSuspended();
uint8_t ReturnStatus = HOST_SENDCONTROL_Successful;
uint16_t DataLen = USB_HostRequest.wLength;
USB_Host_ResumeBus();
if ((ReturnStatus = USB_Host_WaitMS(1)) != HOST_WAITERROR_Successful)
return ReturnStatus;
Pipe_SelectPipe(PIPE_CONTROLPIPE);
Pipe_SetToken(PIPE_TOKEN_SETUP);
Pipe_ClearErrorFlags();
Pipe_ClearSetupSent();
Pipe_Unfreeze();
for (uint8_t HeaderByte = 0; HeaderByte < sizeof(USB_Host_Request_Header_t); HeaderByte++)
Pipe_Write_Byte(*(HeaderStream++));
Pipe_ClearSetupOUT();
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_SetupSent)))
goto End_Of_Control_Send;
Pipe_ClearSetupSent();
Pipe_Freeze();
if ((ReturnStatus = USB_Host_WaitMS(1)) != HOST_WAITERROR_Successful)
goto End_Of_Control_Send;
if ((USB_HostRequest.bmRequestType & CONTROL_REQTYPE_DIRECTION) == REQDIR_DEVICETOHOST)
{
Pipe_SetToken(PIPE_TOKEN_IN);
if (DataStream != NULL)
{
while (DataLen)
{
Pipe_Unfreeze();
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_InReceived)))
goto End_Of_Control_Send;
if (!(Pipe_BytesInPipe()))
DataLen = 0;
while (Pipe_BytesInPipe() && DataLen)
{
*(DataStream++) = Pipe_Read_Byte();
DataLen--;
}
Pipe_Freeze();
Pipe_ClearSetupIN();
}
}
Pipe_SetToken(PIPE_TOKEN_OUT);
Pipe_Unfreeze();
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_OutReady)))
goto End_Of_Control_Send;
Pipe_ClearSetupOUT();
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_OutReady)))
goto End_Of_Control_Send;
}
else
{
if (DataStream != NULL)
{
Pipe_SetToken(PIPE_TOKEN_OUT);
Pipe_Unfreeze();
while (DataLen)
{
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_OutReady)))
goto End_Of_Control_Send;
while (DataLen && (Pipe_BytesInPipe() < USB_ControlPipeSize))
{
Pipe_Write_Byte(*(DataStream++));
DataLen--;
}
Pipe_ClearSetupOUT();
}
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_OutReady)))
goto End_Of_Control_Send;
Pipe_Freeze();
}
Pipe_SetToken(PIPE_TOKEN_IN);
Pipe_Unfreeze();
if ((ReturnStatus = USB_Host_Wait_For_Setup_IOS(USB_HOST_WAITFOR_InReceived)))
goto End_Of_Control_Send;
Pipe_ClearSetupIN();
}
End_Of_Control_Send:
Pipe_Freeze();
if (BusSuspended)
USB_Host_SuspendBus();
Pipe_ResetPipe(PIPE_CONTROLPIPE);
return ReturnStatus;
}
static uint8_t USB_Host_Wait_For_Setup_IOS(const uint8_t WaitType)
{
uint16_t TimeoutCounter = USB_HOST_TIMEOUT_MS;
while (!(((WaitType == USB_HOST_WAITFOR_SetupSent) && Pipe_IsSetupSent()) ||
((WaitType == USB_HOST_WAITFOR_InReceived) && Pipe_IsSetupINReceived()) ||
((WaitType == USB_HOST_WAITFOR_OutReady) && Pipe_IsSetupOUTReady())))
{
uint8_t ErrorCode;
if ((ErrorCode = USB_Host_WaitMS(1)) != HOST_WAITERROR_Successful)
return ErrorCode;
if (!(TimeoutCounter--))
return HOST_SENDCONTROL_SoftwareTimeOut;
}
return HOST_SENDCONTROL_Successful;
}
#endif

View file

@ -0,0 +1,127 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Module for host mode request processing. This module allows for the transmission of standard, class and
* vendor control requests to the default control endpoint of an attached device while in host mode.
*
* \see Chapter 9 of the USB 2.0 specification.
*/
#ifndef __HOSTCHAPTER9_H__
#define __HOSTCHAPTER9_H__
/* Includes: */
#include <avr/io.h>
#include <stdbool.h>
#include "LowLevel.h"
#include "StdRequestType.h"
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Public Interface - May be used in end-application: */
/* Type Defines: */
/** Type define for a standard USB control request.
*
* \see StdRequestType.h for information on the request type and data.
* \see The USB 2.0 specification for more information on standard control requests.
*/
typedef struct
{
uint8_t bmRequestType; /**< Type of the request. */
uint8_t bRequest; /**< Request command code. */
uint16_t wValue; /**< wValue parameter of the request. */
uint16_t wIndex; /**< wIndex parameter of the request. */
uint16_t wLength; /**< Length of the data to transfer in bytes. */
} USB_Host_Request_Header_t;
/* Enums: */
/** Enum for the USB_Host_SendControlRequest() return code, indicating the reason for the error
* if the transfer of the request is unsuccessful.
*/
enum USB_Host_SendControlErrorCodes_t
{
HOST_SENDCONTROL_Successful = 0, /**< No error occurred in the request transfer. */
HOST_SENDCONTROL_DeviceDisconnect = 1, /**< The attached device was disconnected during the
* request transfer.
*/
HOST_SENDCONTROL_PipeError = 2, /**< An error occured in the pipe while sending the request. */
HOST_SENDCONTROL_SetupStalled = 3, /**< The attached device stalled the request, usually
* indicating that the request is unsupported on the device.
*/
HOST_SENDCONTROL_SoftwareTimeOut = 4, /**< The request or data transfer timed out. */
};
/* Global Variables: */
/** Global for the request to send via the USB_Host_SendControlRequest() function. This
* global should be filled with the correct control request data before sending the request to
* the attached device while in host mode.
*/
extern USB_Host_Request_Header_t USB_HostRequest;
/* Function Prototypes: */
/** Sends the request stored in the USB_HostRequest global structure to the attached device,
* and transfers the data stored in the buffer to the device, or from the device to the buffer
* as requested.
*
* \param BufferPtr Pointer to the start of the data buffer if the request has a data stage, or
* NULL if the request transfers no data to or from the device.
*
* \return A value from the USB_Host_SendControlErrorCodes_t enum to indicate the result.
*/
uint8_t USB_Host_SendControlRequest(void* BufferPtr);
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Enums: */
enum USB_WaitForTypes_t
{
USB_HOST_WAITFOR_SetupSent,
USB_HOST_WAITFOR_InReceived,
USB_HOST_WAITFOR_OutReady,
};
/* Function Prototypes: */
#if defined(INCLUDE_FROM_HOSTCHAPTER9_C)
static uint8_t USB_Host_Wait_For_Setup_IOS(const uint8_t WaitType);
#endif
#endif
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,260 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#include "USBMode.h"
#include "LowLevel.h"
#if (!defined(USB_HOST_ONLY) && !defined(USB_DEVICE_ONLY))
volatile uint8_t USB_CurrentMode = USB_MODE_NONE;
#endif
#if !defined(USE_STATIC_OPTIONS)
volatile uint8_t USB_Options;
#endif
void USB_Init(
#if defined(USB_CAN_BE_BOTH)
const uint8_t Mode
#endif
#if (defined(USB_CAN_BE_BOTH) && !defined(USE_STATIC_OPTIONS))
,
#elif (!defined(USB_CAN_BE_BOTH) && defined(USE_STATIC_OPTIONS))
void
#endif
#if !defined(USE_STATIC_OPTIONS)
const uint8_t Options
#endif
)
{
USB_ShutDown();
#if defined(USB_CAN_BE_BOTH)
USB_CurrentMode = Mode;
#endif
#if !defined(USE_STATIC_OPTIONS)
USB_Options = Options;
#endif
#if defined(USB_CAN_BE_HOST)
USB_ControlPipeSize = PIPE_CONTROLPIPE_DEFAULT_SIZE;
#endif
#if defined(USB_DEVICE_ONLY) && defined(USB_FULL_CONTROLLER)
UHWCON |= (1 << UIMOD);
#elif defined(USB_HOST_ONLY)
UHWCON &= ~(1 << UIMOD);
#elif defined(USB_CAN_BE_BOTH)
if (Mode == USB_MODE_UID)
{
UHWCON |= (1 << UIDE);
USB_INT_Clear(USB_INT_IDTI);
USB_INT_Enable(USB_INT_IDTI);
USB_CurrentMode = USB_GetUSBModeFromUID();
}
else if (Mode == USB_MODE_DEVICE)
{
UHWCON |= (1 << UIMOD);
}
else if (Mode == USB_MODE_HOST)
{
UHWCON &= ~(1 << UIMOD);
}
else
{
RAISE_EVENT(USB_PowerOnFail, POWERON_ERROR_NoUSBModeSpecified);
return;
}
#endif
USB_ResetInterface();
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER)
USB_OTGPAD_On();
#endif
USB_IsInitialized = true;
sei();
}
void USB_ShutDown(void)
{
if (USB_IsConnected)
RAISE_EVENT(USB_Disconnect);
USB_Detach();
USB_INT_DisableAllInterrupts();
USB_INT_ClearAllInterrupts();
USB_IsConnected = false;
USB_IsInitialized = false;
#if defined(USB_CAN_BE_HOST)
USB_HostState = HOST_STATE_Unattached;
#endif
#if defined(USB_CAN_BE_DEVICE)
USB_ConfigurationNumber = 0;
#endif
#if defined(CAN_BE_BOTH)
USB_CurrentMode = USB_MODE_NONE;
#endif
USB_Interface_Disable();
USB_PLL_Off();
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER)
USB_OTGPAD_Off();
#endif
#if defined(USB_CAN_BE_BOTH)
UHWCON &= ~(1 << UIDE);
#endif
}
void USB_ResetInterface(void)
{
USB_INT_DisableAllInterrupts();
USB_INT_ClearAllInterrupts();
USB_IsConnected = false;
#if defined(USB_CAN_BE_HOST)
USB_HostState = HOST_STATE_Unattached;
#endif
#if defined(USB_CAN_BE_DEVICE)
USB_ConfigurationNumber = 0;
USB_IsSuspended = false;
USB_RemoteWakeupEnabled = false;
USB_CurrentlySelfPowered = false;
#endif
if (!(USB_Options & USB_OPT_MANUAL_PLL))
{
#if defined(USB_MODIFIED_FULL_CONTROLLER)
PLLFRQ = ((1 << PLLUSB) | (1 << PDIV3) | (1 << PDIV1));
#endif
USB_PLL_On();
while (!(USB_PLL_IsReady()));
}
USB_Interface_Reset();
#if defined(USB_CAN_BE_BOTH)
if (UHWCON & (1 << UIDE))
{
USB_INT_Clear(USB_INT_IDTI);
USB_INT_Enable(USB_INT_IDTI);
USB_CurrentMode = USB_GetUSBModeFromUID();
}
#endif
if (!(USB_Options & USB_OPT_REG_DISABLED))
USB_REG_On();
USB_CLK_Unfreeze();
#if (defined(USB_CAN_BE_DEVICE) && (defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER)))
if (USB_CurrentMode == USB_MODE_DEVICE)
{
if (USB_Options & USB_DEVICE_OPT_LOWSPEED)
USB_Device_SetLowSpeed();
else
USB_Device_SetHighSpeed();
USB_INT_Enable(USB_INT_VBUS);
}
#endif
#if (defined(USB_CAN_BE_DEVICE) && !defined(FIXED_CONTROL_ENDPOINT_SIZE))
if (USB_CurrentMode == USB_MODE_DEVICE)
{
USB_Descriptor_Device_t* DeviceDescriptorPtr;
if (USB_GetDescriptor((DTYPE_Device << 8), 0, (void*)&DeviceDescriptorPtr) != NO_DESCRIPTOR)
{
#if defined(USE_RAM_DESCRIPTORS)
USB_ControlEndpointSize = DeviceDescriptorPtr->Endpoint0Size;
#elif defined(USE_EEPROM_DESCRIPTORS)
USB_ControlEndpointSize = eeprom_read_byte(&DeviceDescriptorPtr->Endpoint0Size);
#else
USB_ControlEndpointSize = pgm_read_byte(&DeviceDescriptorPtr->Endpoint0Size);
#endif
}
}
#endif
USB_Attach();
#if defined(USB_DEVICE_ONLY)
USB_INT_Enable(USB_INT_SUSPEND);
USB_INT_Enable(USB_INT_EORSTI);
#elif defined(USB_HOST_ONLY)
USB_Host_HostMode_On();
USB_Host_VBUS_Auto_Off();
USB_OTGPAD_Off();
USB_Host_VBUS_Manual_Enable();
USB_Host_VBUS_Manual_On();
USB_INT_Enable(USB_INT_SRPI);
USB_INT_Enable(USB_INT_BCERRI);
#else
if (USB_CurrentMode == USB_MODE_DEVICE)
{
USB_INT_Enable(USB_INT_SUSPEND);
USB_INT_Enable(USB_INT_EORSTI);
}
else if (USB_CurrentMode == USB_MODE_HOST)
{
USB_Host_HostMode_On();
USB_Host_VBUS_Auto_Off();
USB_OTGPAD_Off();
USB_Host_VBUS_Manual_Enable();
USB_Host_VBUS_Manual_On();
USB_INT_Enable(USB_INT_SRPI);
USB_INT_Enable(USB_INT_BCERRI);
}
#endif
}

View file

@ -0,0 +1,371 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main low level USB driver. This module manages the low level initialization and shut down of the USB AVR's
* USB interface in either device or (if supported) host mode.
*/
#ifndef __USBLOWLEVEL_H__
#define __USBLOWLEVEL_H__
/* Includes: */
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include "USBMode.h"
#include "../../../Common/Common.h"
#include "../HighLevel/Events.h"
#include "../HighLevel/USBTask.h"
#include "../HighLevel/USBInterrupt.h"
#if defined(USB_CAN_BE_HOST) || defined(__DOXYGEN__)
#include "Host.h"
#include "Pipe.h"
#include "OTG.h"
#endif
#if defined(USB_CAN_BE_DEVICE) || defined(__DOXYGEN__)
#include "Device.h"
#include "Endpoint.h"
#include "DevChapter9.h"
#endif
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Preprocessor Checks and Defines: */
#if (F_CPU == 8000000)
#if (defined(__AVR_AT90USB82__) || defined(__AVR_AT90USB162__))
#define USB_PLL_PSC 0
#elif (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || \
defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || \
defined(__AVR_ATmega32U6__))
#define USB_PLL_PSC ((1 << PLLP1) | (1 << PLLP0))
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
#define USB_PLL_PSC 0
#endif
#elif (F_CPU == 16000000)
#if (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_ATmega32U6__))
#define USB_PLL_PSC ((1 << PLLP2) | (1 << PLLP1))
#elif (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__))
#define USB_PLL_PSC ((1 << PLLP2) | (1 << PLLP0))
#elif (defined(__AVR_AT90USB82__) || defined(__AVR_AT90USB162__))
#define USB_PLL_PSC (1 << PLLP0)
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
#define USB_PLL_PSC (1 << PINDIV)
#endif
#endif
#if !defined(USB_PLL_PSC)
#error No PLL prescale value available for chosen F_CPU value and AVR model.
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Mode mask for the USB_CurrentMode global. This indicates that the USB interface is currently not
* initialized into any mode.
*/
#define USB_MODE_NONE 0
/** Mode mask for the USB_CurrentMode global and the USB_Init() function. This indicates that the
* USB interface is or should be initialized in the USB device mode.
*/
#define USB_MODE_DEVICE 1
/** Mode mask for the USB_CurrentMode global and the USB_Init() function. This indicates that the
* USB interface is or should be initialized in the USB host mode.
*
* \note Not all USB AVRs support host mode.
*/
#define USB_MODE_HOST 2
/** Mode mask for the the USB_Init() function. This indicates that the USB interface should be
* initialized into whatever mode the UID pin of the USB AVR indicates, and that the device
* should swap over its mode when the level of the UID pin changes during operation.
*
* \note Not all USB AVRs support host mode, and thus UID mode.
*/
#define USB_MODE_UID 3
/** Regulator disable option mask for USB_Init(). This indicates that the internal 3.3V USB data pad
* regulator should be enabled to regulate the data pin voltages to within the USB standard.
*
* \note See USB AVR data sheet for more information on the internal pad regulator.
*/
#define USB_OPT_REG_DISABLED (1 << 1)
/** Regulator enable option mask for USB_Init(). This indicates that the internal 3.3V USB data pad
* regulator should be disabled and the AVR's VCC level used for the data pads.
*
* \note See USB AVR data sheet for more information on the internal pad regulator.
*/
#define USB_OPT_REG_ENABLED (0 << 1)
/** Manual PLL control option mask for USB_Init(). This indicates to the library that the user application
* will take full responsibility for controlling the AVR's PLL (used to generate the high frequency clock
* that the USB controller requires) and ensuring that it is locked at the correct frequency for USB operations.
*/
#define USB_OPT_MANUAL_PLL (1 << 2)
/** Automatic PLL control option mask for USB_Init(). This indicates to the library that the library should
* take full responsibility for controlling the AVR's PLL (used to generate the high frequency clock
* that the USB controller requires) and ensuring that it is locked at the correct frequency for USB operations.
*/
#define USB_OPT_AUTO_PLL (0 << 2)
/** Mask for a CONTROL type endpoint or pipe.
*
* \note See Endpoint.h and Pipe.h headers for endpoint/pipe functions.
*/
#define EP_TYPE_CONTROL 0b00
/** Mask for an ISOCHRONOUS type endpoint or pipe.
*
* \note See Endpoint.h and Pipe.h headers for endpoint/pipe functions.
*/
#define EP_TYPE_ISOCHRONOUS 0b01
/** Mask for a BULK type endpoint or pipe.
*
* \note See Endpoint.h and Pipe.h headers for endpoint/pipe functions.
*/
#define EP_TYPE_BULK 0b10
/** Mask for an INTERRUPT type endpoint or pipe.
*
* \note See Endpoint.h and Pipe.h headers for endpoint/pipe functions.
*/
#define EP_TYPE_INTERRUPT 0b11
/** Mask for determining the type of an endpoint or pipe. This should then be compared with the
* EP_TYPE_* macros elsewhere in this module to determine the exact type of the endpoint or pipe.
*
* \note See Endpoint.h and Pipe.h headers for endpoint/pipe functions.
*/
#define EP_TYPE_MASK 0b11
/** Returns boolean true if the VBUS line is currently high (i.e. the USB host is supplying power),
* otherwise returns false.
*/
#define USB_VBUS_GetStatus() ((USBSTA & (1 << VBUS)) ? true : false)
/** Detaches the device from the USB bus. This has the effect of removing the device from any
* host if, ceasing USB communications. If no host is present, this prevents any host from
* enumerating the device once attached until USB_Attach() is called.
*/
#define USB_Detach() MACROS{ UDCON |= (1 << DETACH); }MACROE
/** Attaches the device to the USB bus. This announces the device's presence to any attached
* USB host, starting the enumeration process. If no host is present, attaching the device
* will allow for enumeration once a host is connected to the device.
*
* This is inexplicably also required for proper operation while in host mode, to enable the
* attachment of a device to the host. This is despite the bit being located in the device-mode
* register and despite the datasheet making no mention of its requirement in host mode.
*/
#define USB_Attach() MACROS{ UDCON &= ~(1 << DETACH); }MACROE
#if !defined(USB_STREAM_TIMEOUT_MS) || defined(__DOXYGEN__)
/** Constant for the maximum software timeout period of the USB data stream transfer functions
* (both control and standard) when in either device or host mode. If the next packet of a stream
* is not received or acknowedged within this time period, the stream function will fail.
*
* This value may be overridden in the user project makefile as the value of the
* USB_STREAM_TIMEOUT_MS token, and passed to the compiler using the -D switch.
*/
#define USB_STREAM_TIMEOUT_MS 100
#endif
/* Function Prototypes: */
/** Main function to initialize and start the USB interface. Once active, the USB interface will
* allow for device connection to a host when in device mode, or for device enumeration while in
* host mode.
*
* As the USB library relies on USB interrupts for some of its functionality, this routine will
* enable global interrupts.
*
* Calling this function when the USB interface is already initialized will cause a complete USB
* interface reset and re-enumeration.
*
* \param Mode This is a mask indicating what mode the USB interface is to be initialized to.
* Valid mode masks are USB_MODE_DEVICE, USB_MODE_HOST or USB_MODE_UID.
*
* \param Options Mask indicating the options which should be used when initializing the USB
* interface to control the USB interface's behaviour. This should be comprised of
* a USB_OPT_REG_* mask to control the regulator, a USB_OPT_*_PLL mask to control the
* PLL, and a USB_DEVICE_OPT_* mask (when the device mode is enabled) to set the device
* mode speed.
*
* \note To reduce the FLASH requirements of the library if only device or host mode is required,
* this can be statically set via defining the token USB_DEVICE_ONLY for device mode or
* USB_HOST_ONLY for host mode in the use project makefile, passing the token to the compiler
* via the -D switch. If the mode is statically set, this parameter does not exist in the
* function prototype.
*
* \note To reduce the FLASH requirements of the library if only fixed settings are are required,
* the options may be set statically in the same manner as the mode (see the Mode parameter of
* this function). To statically set the USB options, pass in the USE_STATIC_OPTIONS token,
* defined to the appropriate options masks. When the options are statically set, this
* parameter does not exist in the function prototype.
*
* \note The mode parameter does not exist on devices where only one mode is possible, such as USB
* AVR models which only implement the USB device mode in hardware.
*
* \see Device.h for the USB_DEVICE_OPT_* masks.
*/
void USB_Init(
#if defined(USB_CAN_BE_BOTH) || defined(__DOXYGEN__)
const uint8_t Mode
#endif
#if (defined(USB_CAN_BE_BOTH) && !defined(USE_STATIC_OPTIONS)) || defined(__DOXYGEN__)
,
#elif (!defined(USB_CAN_BE_BOTH) && defined(USE_STATIC_OPTIONS))
void
#endif
#if !defined(USE_STATIC_OPTIONS) || defined(__DOXYGEN__)
const uint8_t Options
#endif
);
/** Shuts down the USB interface. This turns off the USB interface after deallocating all USB FIFO
* memory, endpoints and pipes. When turned off, no USB functionality can be used until the interface
* is restarted with the USB_Init() function.
*/
void USB_ShutDown(void);
/** Resets the interface, when already initialized. This will re-enumerate the device if already connected
* to a host, or re-enumerate an already attached device when in host mode.
*/
void USB_ResetInterface(void);
/* Enums: */
/** Enum for error codes relating to the powering on of the USB interface. These error codes are
* used in the ErrorCode parameter value of the USB_PowerOnFail event.
*/
enum USB_PowerOnErrorCodes_t
{
POWERON_ERROR_NoUSBModeSpecified = 0, /**< Indicates that USB_Init() was called with an
* invalid or missing Mode parameter.
*/
};
/* Global Variables: */
#if (!defined(USB_HOST_ONLY) && !defined(USB_DEVICE_ONLY)) || defined(__DOXYGEN__)
/** Indicates the mode that the USB interface is currently initialized to. This value will be
* one of the USB_MODE_* masks defined elsewhere in this module.
*
* \note This variable should be treated as read-only in the user application, and never manually
* changed in value.
*/
extern volatile uint8_t USB_CurrentMode;
#endif
#if !defined(USE_STATIC_OPTIONS) || defined(__DOXYGEN__)
extern volatile uint8_t USB_Options;
/** Indicates the current USB options that the USB interface was initialized with when USB_Init()
* was called. This value will be one of the USB_MODE_* masks defined elsewhere in this module.
*
* \note This variable should be treated as read-only in the user application, and never manually
* changed in value.
*/
#endif
/* Throwable Events: */
/** This module raises the USB_Disconnect event if the USB interface is reset (such as during a mode
* change while in UID mode) while the USB interface is connected to a device when in host mode, or
* a host while in device mode.
*
* \see Events.h for more information on this event.
*/
RAISES_EVENT(USB_Disconnect);
#if defined(USB_CAN_BE_BOTH) || defined(__DOXYGEN__)
/** This module raises the Power On Failure event when an error occurs while initializing the USB
* interface.
*
* \see Events.h for more information on this event.
*/
RAISES_EVENT(USB_PowerOnFail);
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define USB_PLL_On() MACROS{ PLLCSR = USB_PLL_PSC; PLLCSR |= (1 << PLLE); }MACROE
#define USB_PLL_Off() MACROS{ PLLCSR = 0; }MACROE
#define USB_PLL_IsReady() ((PLLCSR & (1 << PLOCK)) ? true : false)
#if defined(USB_FULL_CONTROLLER) || defined(USB_MODIFIED_FULL_CONTROLLER)
#define USB_REG_On() MACROS{ UHWCON |= (1 << UVREGE); }MACROE
#define USB_REG_Off() MACROS{ UHWCON &= ~(1 << UVREGE); }MACROE
#else
#define USB_REG_On() MACROS{ REGCR &= ~(1 << REGDIS); }MACROE
#define USB_REG_Off() MACROS{ REGCR |= (1 << REGDIS); }MACROE
#endif
#define USB_OTGPAD_On() MACROS{ USBCON |= (1 << OTGPADE); }MACROE
#define USB_OTGPAD_Off() MACROS{ USBCON &= ~(1 << OTGPADE); }MACROE
#define USB_CLK_Freeze() MACROS{ USBCON |= (1 << FRZCLK); }MACROE
#define USB_CLK_Unfreeze() MACROS{ USBCON &= ~(1 << FRZCLK); }MACROE
#define USB_Interface_Enable() MACROS{ USBCON |= (1 << USBE); }MACROE
#define USB_Interface_Disable() MACROS{ USBCON &= ~(1 << USBE); }MACROE
#define USB_Interface_Reset() MACROS{ uint8_t Temp = USBCON; USBCON = (Temp & ~(1 << USBE)); \
USBCON = (Temp | (1 << USBE)); }MACROE
/* Inline Functions: */
static inline uint8_t USB_GetUSBModeFromUID(void) ATTR_WARN_UNUSED_RESULT;
static inline uint8_t USB_GetUSBModeFromUID(void)
{
#if (defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__))
if (USBSTA & (1 << ID))
return USB_MODE_DEVICE;
else
return USB_MODE_HOST;
#else
return USB_MODE_DEVICE;
#endif
}
#endif
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,102 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Macros for embedded USB hosts with dual role On The Go capabilities, for managing role exchange. OTG
* is a way for two USB dual role devices to talk to one another directly without fixed device/host roles.
*
* \note These macros are only for AVRs which support the OTG protocol, and do not exist for device-only AVRs.
*/
#ifndef __USBOTG_H__
#define __USBOTG_H__
/* Includes: */
#include <avr/io.h>
#include <stdbool.h>
#include "../../../Common/Common.h"
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Initiate a Host Negotiation Protocol request. This indicates to the other connected device
* that the device wishes to change device/host roles.
*/
#define USB_OTG_DEV_Request_HNP() MACROS{ OTGCON |= (1 << HNPREQ); }MACROE
/** Cancel a Host Negotiation Protocol request. This stops a pending HNP request to the other
* connected device.
*/
#define USB_OTG_DEV_Cancel_HNP_Request() MACROS{ OTGCON &= ~(1 << HNPREQ); }MACROE
/** Returns boolean false if not currently sending a HNP to the other connected device, or true
* if a HNP is currently being issued.
*/
#define USB_OTG_DEV_IsSendingHNP() ((OTGCON & (1 << HNPREQ)) ? true : false)
/** Accepts a HNP from a connected device, indicating that both devices should exchange
* device/host roles.
*/
#define USB_OTG_HOST_Accept_HNP() USB_OTG_DEV_Request_HNP()
/** Rejects a HNP from a connected device, indicating that both devices should remain in their
* current device/host roles.
*/
#define USB_OTG_HOST_Reject_HNP() USB_OTG_DEV_Cancel_HNP_Request()
/** Returns boolean false if the connected device is not currently sending a HNP request, or true
* if a HNP is currently being issued by the connected device.
*/
#define USB_OTG_HOST_IsHNPReceived() ((OTGCON & (1 << HNPREQ)) ? true : false)
/** Initiates a Session Request Protocol request. Most OTG devices turn off VBUS when the USB
* interface is not in use, to conserve power. Sending a SRP to a USB OTG device running in
* host mode indicates that VBUS should be applied and a session started.
*
* There are two different methods of sending a SRP - either pulses on the VBUS line, or by
* pulsing the Data + line via the internal pullup resistor. The SRP mode is given as the
* "type" parameter, and can be either USB_OTG_SRP_VBUS or USB_OTG_STP_DATA.
*/
#define USB_OTG_DEV_Initiate_SRP(type) MACROS{ OTGCON = ((OTGCON & ~(1 << SRPSEL)) | (type | (1 << SRPREQ))); }MACROE
/** Mask for the VBUS pulsing method of SRP, supported by some OTG devices.
*
* \see USB_OTG_DEV_Initiate_SRP()
*/
#define USB_OTG_SRP_VBUS (1 << SRPSEL)
/** Mask for the Data + pulsing method of SRP, supported by some OTG devices.
*
* \see USB_OTG_DEV_Initiate_SRP()
*/
#define USB_OTG_STP_DATA 0
#endif

View file

@ -0,0 +1,258 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#include "USBMode.h"
#if defined(USB_CAN_BE_HOST)
#define INCLUDE_FROM_PIPE_C
#include "Pipe.h"
uint8_t USB_ControlPipeSize = PIPE_CONTROLPIPE_DEFAULT_SIZE;
bool Pipe_ConfigurePipe(const uint8_t Number, const uint8_t Type, const uint8_t Token, const uint8_t EndpointNumber,
const uint16_t Size, const uint8_t Banks)
{
Pipe_SelectPipe(Number);
Pipe_EnablePipe();
UPCFG1X = 0;
UPCFG0X = ((Type << EPTYPE0) | Token | (EndpointNumber << PEPNUM0));
UPCFG1X = ((1 << ALLOC) | Banks | Pipe_BytesToEPSizeMask(Size));
return Pipe_IsConfigured();
}
void Pipe_ClearPipes(void)
{
UPINT = 0;
for (uint8_t PNum = 0; PNum < PIPE_TOTAL_PIPES; PNum++)
{
Pipe_ResetPipe(PNum);
Pipe_SelectPipe(PNum);
UPIENX = 0;
UPINTX = 0;
Pipe_ClearError();
Pipe_ClearErrorFlags();
Pipe_DeallocateMemory();
Pipe_DisablePipe();
}
}
uint8_t Pipe_WaitUntilReady(void)
{
uint8_t TimeoutMSRem = USB_STREAM_TIMEOUT_MS;
USB_INT_Clear(USB_INT_HSOFI);
while (!(Pipe_ReadWriteAllowed()))
{
if (Pipe_IsStalled())
return PIPE_READYWAIT_PipeStalled;
else if (!(USB_IsConnected))
return PIPE_READYWAIT_DeviceDisconnected;
if (USB_INT_HasOccurred(USB_INT_HSOFI))
{
USB_INT_Clear(USB_INT_HSOFI);
if (!(TimeoutMSRem--))
return PIPE_READYWAIT_Timeout;
}
}
return PIPE_READYWAIT_NoError;
}
uint8_t Pipe_Write_Stream_LE(const void* Data, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)Data;
uint8_t ErrorCode;
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Pipe_ReadWriteAllowed()))
{
Pipe_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return PIPE_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
}
Pipe_Write_Byte(*(DataStream++));
}
return PIPE_RWSTREAM_ERROR_NoError;
}
uint8_t Pipe_Write_Stream_BE(const void* Data, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)(Data + Length - 1);
uint8_t ErrorCode;
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Pipe_ReadWriteAllowed()))
{
Pipe_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return PIPE_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
}
Pipe_Write_Byte(*(DataStream--));
}
return PIPE_RWSTREAM_ERROR_NoError;
}
uint8_t Pipe_Discard_Stream(uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t ErrorCode;
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Pipe_ReadWriteAllowed()))
{
Pipe_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return PIPE_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
}
Pipe_Discard_Byte();
}
return PIPE_RWSTREAM_ERROR_NoError;
}
uint8_t Pipe_Read_Stream_LE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)Buffer;
uint8_t ErrorCode;
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Pipe_ReadWriteAllowed()))
{
Pipe_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return PIPE_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
}
*(DataStream++) = Pipe_Read_Byte();
}
return PIPE_RWSTREAM_ERROR_NoError;
}
uint8_t Pipe_Read_Stream_BE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS)
, uint8_t (* const Callback)(void)
#endif
)
{
uint8_t* DataStream = (uint8_t*)(Buffer + Length - 1);
uint8_t ErrorCode;
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
while (Length--)
{
if (!(Pipe_ReadWriteAllowed()))
{
Pipe_ClearCurrentBank();
#if !defined(NO_STREAM_CALLBACKS)
if ((Callback != NULL) && (Callback() == STREAMCALLBACK_Abort))
return PIPE_RWSTREAM_ERROR_CallbackAborted;
#endif
if ((ErrorCode = Pipe_WaitUntilReady()))
return ErrorCode;
}
*(DataStream--) = Pipe_Read_Byte();
}
return PIPE_RWSTREAM_ERROR_NoError;
}
#endif

View file

@ -0,0 +1,788 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Functions, macros and enums related to pipe management when in USB Host mode. This
* module contains the pipe management macros, as well as pipe interrupt and data
* send/recieve functions for various datatypes.
*/
#ifndef __PIPE_H__
#define __PIPE_H__
/* Includes: */
#include <avr/io.h>
#include <stdbool.h>
#include "../../../Common/Common.h"
#include "../HighLevel/USBTask.h"
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
#include "StreamCallbacks.h"
#endif
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Mask for Pipe_GetErrorFlags(), indicating that a CRC error occurred in the pipe on the received data. */
#define PIPE_ERRORFLAG_CRC16 (1 << 4)
/** Mask for Pipe_GetErrorFlags(), indicating that a hardware timeout error occurred in the pipe. */
#define PIPE_ERRORFLAG_TIMEOUT (1 << 3)
/** Mask for Pipe_GetErrorFlags(), indicating that a hardware PID error occurred in the pipe. */
#define PIPE_ERRORFLAG_PID (1 << 2)
/** Mask for Pipe_GetErrorFlags(), indicating that a hardware data PID error occurred in the pipe. */
#define PIPE_ERRORFLAG_DATAPID (1 << 1)
/** Mask for Pipe_GetErrorFlags(), indicating that a hardware data toggle error occurred in the pipe. */
#define PIPE_ERRORFLAG_DATATGL (1 << 0)
/** Token mask for Pipe_ConfigurePipe(). This sets the pipe as a SETUP token (for CONTROL type pipes),
* which will trigger a control request on the attached device when data is written to the pipe.
*/
#define PIPE_TOKEN_SETUP (0b00 << PTOKEN0)
/** Token mask for Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
* indicating that the pipe data will flow from device to host.
*/
#define PIPE_TOKEN_IN (0b01 << PTOKEN0)
/** Token mask for Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
* indicating that the pipe data will flow from host to device.
*/
#define PIPE_TOKEN_OUT (0b10 << PTOKEN0)
/** Mask for the bank mode selection for the Pipe_ConfigurePipe() macro. This indicates that the pipe
* should have one single bank, which requires less USB FIFO memory but results in slower transfers as
* only one USB device (the AVR or the attached device) can access the pipe's bank at the one time.
*/
#define PIPE_BANK_SINGLE 0
/** Mask for the bank mode selection for the Pipe_ConfigurePipe() macro. This indicates that the pipe
* should have two banks, which requires more USB FIFO memory but results in faster transfers as one
* USB device (the AVR or the attached device) can access one bank while the other accesses the second
* bank.
*/
#define PIPE_BANK_DOUBLE (1 << EPBK0)
/** Pipe address for the default control pipe, which always resides in address 0. This is
* defined for convenience to give more readable code when used with the pipe macros.
*/
#define PIPE_CONTROLPIPE 0
/** Default size of the default control pipe's bank, until altered by the Endpoint0Size value
* in the device descriptor of the attached device.
*/
#define PIPE_CONTROLPIPE_DEFAULT_SIZE 8
/** Pipe number mask, for masking against pipe addresses to retrieve the pipe's numerical address
* in the device.
*/
#define PIPE_PIPENUM_MASK 0x07
/** Total number of pipes (including the default control pipe at address 0) which may be used in
* the device. Different USB AVR models support different amounts of pipes, this value reflects
* the maximum number of pipes for the currently selected AVR model.
*/
#define PIPE_TOTAL_PIPES 7
/** Size in bytes of the largest pipe bank size possible in the device. Not all banks on each AVR
* model supports the largest bank size possible on the device; different pipe numbers support
* different maximum bank sizes. This value reflects the largest possible bank of any pipe on the
* currently selected USB AVR model.
*/
#define PIPE_MAX_SIZE 256
/** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
* numerical address in the attached device.
*/
#define PIPE_EPNUM_MASK 0x07
/** Endpoint bank size mask, for masking against endpoint addresses to retrieve the endpoint's
* bank size in the attached device.
*/
#define PIPE_EPSIZE_MASK 0x7FF
/** Interrupt definition for the pipe IN interrupt (for INTERRUPT type pipes). Should be used with
* the USB_INT_* macros located in USBInterrupt.h.
*
* This interrupt will fire if enabled on an INTERRUPT type pipe if the pipe interrupt period has
* elapsed and the pipe is ready for the next packet from the attached device to be read out from its
* FIFO buffer (if received).
*
* This interrupt must be enabled on *each* pipe which requires it (after the pipe is selected), and
* will fire the common pipe interrupt vector.
*
* \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
*/
#define PIPE_INT_IN UPIENX, (1 << RXINE) , UPINTX, (1 << RXINI)
/** Interrupt definition for the pipe OUT interrupt (for INTERRUPT type pipes). Should be used with
* the USB_INT_* macros located in USBInterrupt.h.
*
* This interrupt will fire if enabled on an INTERRUPT type endpoint if a the pipe interrupt period
* has elapsed and the pipe is ready for a packet to be written to the pipe's FIFO buffer and sent
* to the attached device (if required).
*
* This interrupt must be enabled on *each* pipe which requires it (after the pipe is selected), and
* will fire the common pipe interrupt vector.
*
* \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector. */
#define PIPE_INT_OUT UPIENX, (1 << TXOUTE), UPINTX, (1 << TXOUTI)
/** Interrupt definition for the pipe SETUP bank ready interrupt (for CONTROL type pipes). Should be
* used with the USB_INT_* macros located in USBInterrupt.h.
*
* This interrupt will fire if enabled on an CONTROL type pipe when the pipe is ready for a new
* control request.
*
* This interrupt must be enabled on *each* pipe which requires it (after the pipe is selected), and
* will fire the common pipe interrupt vector.
*
* \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
*/
#define PIPE_INT_SETUP UPIENX, (1 << TXSTPE) , UPINTX, (1 << TXSTPI)
/** Interrupt definition for the pipe error interrupt. Should be used with the USB_INT_* macros
* located in USBInterrupt.h.
*
* This interrupt will fire if enabled on a particular pipe if an error occurs on that pipe, such
* as a CRC mismatch error.
*
* This interrupt must be enabled on *each* pipe which requires it (after the pipe is selected), and
* will fire the common pipe interrupt vector.
*
* \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
*
* \see Pipe_GetErrorFlags() for more information on the pipe errors.
*/
#define PIPE_INT_ERROR UPIENX, (1 << PERRE), UPINTX, (1 << PERRI)
/** Interrupt definition for the pipe NAK received interrupt. Should be used with the USB_INT_* macros
* located in USBInterrupt.h.
*
* This interrupt will fire if enabled on a particular pipe if an attached device returns a NAK in
* response to a sent packet.
*
* This interrupt must be enabled on *each* pipe which requires it (after the pipe is selected), and
* will fire the common pipe interrupt vector.
*
* \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
*
* \see Pipe_IsNAKReceived() for more information on pipe NAKs.
*/
#define PIPE_INT_NAK UPIENX, (1 << NAKEDE), UPINTX, (1 << NAKEDI)
/** Interrupt definition for the pipe STALL received interrupt. Should be used with the USB_INT_* macros
* located in USBInterrupt.h.
*
* This interrupt will fire if enabled on a particular pipe if an attached device returns a STALL on the
* currently selected pipe. This will also fire if the pipe is an isochronous pipe and a CRC error occurs.
*
* This interrupt must be enabled on *each* pipe which requires it (after the pipe is selected), and
* will fire the common pipe interrupt vector.
*
* \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
*/
#define PIPE_INT_STALL UPIENX, (1 << RXSTALLE), UPINTX, (1 << RXSTALLI)
/** Indicates the number of bytes currently stored in the current pipe's selected bank. */
#define Pipe_BytesInPipe() UPBCX
/** Resets the desired pipe, including the pipe banks and flags. */
#define Pipe_ResetPipe(pipenum) MACROS{ UPRST = (1 << pipenum); UPRST = 0; }MACROE
/** Selects the given pipe number. Any pipe operations which do not require the pipe number to be
* indicated will operate on the currently selected pipe.
*/
#define Pipe_SelectPipe(pipenum) MACROS{ UPNUM = pipenum; }MACROE
/** Returns the pipe address of the currently selected pipe. This is typically used to save the
* currently selected pipe number so that it can be restored after another pipe has been manipulated.
*/
#define Pipe_GetCurrentPipe() (UPNUM & PIPE_PIPENUM_MASK)
/** Enables the currently selected pipe so that data can be sent and received through it to and from
* an attached device.
*
* \note Pipes must first be configured properly rather than just being enabled via the
* Pipe_ConfigurePipe() macro, which calls Pipe_EnablePipe() automatically.
*/
#define Pipe_EnablePipe() MACROS{ UPCONX |= (1 << PEN); }MACROE
/** Disables the currently selected pipe so that data cannot be sent and received through it to and
* from an attached device.
*/
#define Pipe_DisablePipe() MACROS{ UPCONX &= ~(1 << PEN); }MACROE
/** Returns true if the currently selected pipe is enabled, false otherwise. */
#define Pipe_IsEnabled() ((UPCONX & (1 << PEN)) ? true : false)
/** Sets the token for the currently selected endpoint to one of the tokens specified by the PIPE_TOKEN_*
* masks. This should only be used on CONTROL type endpoints, to allow for bidirectional transfer of
* data during control requests.
*/
#define Pipe_SetToken(token) MACROS{ UPCFG0X = ((UPCFG0X & ~PIPE_TOKEN_MASK) | token); }MACROE
/** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
#define Pipe_SetInfiniteINRequests() MACROS{ UPCONX |= (1 << INMODE); }MACROE
/** Configures the currently selected pipe to only allow the specified number of IN requests to be
* accepted by the pipe before it is automatically frozen.
*/
#define Pipe_SetFiniteINRequests(n) MACROS{ UPCONX &= ~(1 << INMODE); UPINRQX = n; }MACROE
/** Returns true if the currently selected pipe is configured, false otherwise. */
#define Pipe_IsConfigured() ((UPSTAX & (1 << CFGOK)) ? true : false)
/** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds. */
#define Pipe_SetInterruptPeriod(ms) MACROS{ UPCFG2X = ms; }MACROE
/** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
* be serviced.
*/
#define Pipe_GetPipeInterrupts() UPINT
/** Clears the interrupt flag for the specified pipe number. */
#define Pipe_ClearPipeInterrupt(n) MACROS{ UPINT &= ~(1 << n); }MACROE
/** Returns true if the specified pipe's interrupt period has elapsed, false otherwise. */
#define Pipe_HasPipeInterrupted(n) ((UPINT & (1 << n)) ? true : false)
/** Clears the pipe bank, and switches to the alternate bank if the currently selected pipe is
* dual-banked. When cleared, this either frees the bank up for the next packet from the host
* (if the endpoint is of the OUT direction) or sends the packet contents to the host (if the
* pipe is of the IN direction).
*/
#define Pipe_ClearCurrentBank() MACROS{ UPINTX &= ~(1 << FIFOCON); }MACROE
/** Unfreezes the pipe, allowing it to communicate with an attached device. */
#define Pipe_Unfreeze() MACROS{ UPCONX &= ~(1 << PFREEZE); }MACROE
/** Freezes the pipe, preventing it from communicating with an attached device. */
#define Pipe_Freeze() MACROS{ UPCONX |= (1 << PFREEZE); }MACROE
/** Clears the master pipe error flag. */
#define Pipe_ClearError() MACROS{ UPINTX &= ~(1 << PERRI); }MACROE
/** Returns true if the master pipe error flag is set for the currently selected pipe, indicating that
* some sort of hardware error has occurred on the pipe.
*
* \see Pipe_GetErrorFlags() macro for information on retreiving the exact error flag.
*/
#define Pipe_IsError() ((UPINTX & (1 << PERRI)) ? true : false)
/** Clears all the currently selected pipe's hardware error flags, but does not clear the master error
* flag for the pipe. */
#define Pipe_ClearErrorFlags() MACROS{ UPERRX = 0; }MACROE
/** Returns a mask of the hardware error flags which have occured on the currently selected pipe. This
* value can then be masked against the PIPE_ERRORFLAG_* masks to determine what error has occurred.
*/
#define Pipe_GetErrorFlags() UPERRX
/** Returns true if the currently selected pipe may be read from (if data is waiting in the pipe
* bank and the pipe is an IN direction, or if the bank is not yet full if the pipe is an OUT
* direction). This function will return false if an error has occured in the pipe, or if the pipe
* is an IN direction and no packet has been received, or if the pipe is an OUT direction and the
* pipe bank is full.
*/
#define Pipe_ReadWriteAllowed() ((UPINTX & (1 << RWAL)) ? true : false)
/** Clears the flag indicating that a SETUP request has been sent to the attached device from the
* currently selected CONTROL type pipe.
*/
#define Pipe_ClearSetupSent() MACROS{ UPINTX &= ~(1 << TXSTPI); }MACROE
/** Returns true if no SETUP request is currently being sent to the attached device, false otherwise. */
#define Pipe_IsSetupSent() ((UPINTX & (1 << TXSTPI)) ? true : false)
/** Returns true if the currently selected pipe has been stalled by the attached device, false otherwise. */
#define Pipe_IsStalled() ((UPINTX & (1 << RXSTALLI)) ? true : false)
/** Clears the stall condition on the currently selected pipe. */
#define Pipe_ClearStall() MACROS{ UPINTX &= ~(1 << RXSTALLI); }MACROE
/** Returns true if an IN request has been received on the currently selected CONTROL type pipe, false
* otherwise.
*/
#define Pipe_IsSetupINReceived() ((UPINTX & (1 << RXINI)) ? true : false)
/** Returns true if the currently selected CONTROL type pipe is ready to send an OUT request, false
* otherwise.
*/
#define Pipe_IsSetupOUTReady() ((UPINTX & (1 << TXOUTI)) ? true : false)
/** Acknowedges the reception of a setup IN request from the attached device on the currently selected
* CONTROL type endpoint, allowing for the transmission of a setup OUT packet, or the reception of
* another setup IN packet.
*/
#define Pipe_ClearSetupIN() MACROS{ UPINTX &= ~(1 << RXINI); UPINTX &= ~(1 << FIFOCON); }MACROE
/** Sends the currently selected CONTROL type pipe's contents to the device as a setup OUT packet. */
#define Pipe_ClearSetupOUT() MACROS{ UPINTX &= ~(1 << TXOUTI); UPINTX &= ~(1 << FIFOCON); }MACROE
/** Returns true if the device sent a NAK (Negative Acknowedge) in response to the last sent packet on
* the currently selected pipe. This ocurrs when the host sends a packet to the device, but the device
* is not currently ready to handle the packet (i.e. its endpoint banks are full). Once a NAK has been
* received, it must be cleard using Pipe_ClearNAKReceived() before the previous (or any other) packet
* can be re-sent.
*/
#define Pipe_IsNAKReceived() ((UPINTX & (1 << NAKEDI)) ? true : false)
/** Clears the NAK condition on the currently selected pipe.
*
* \see Pipe_IsNAKReceived() for more details.
*/
#define Pipe_ClearNAKReceived() MACROS{ UPINTX &= ~(1 << NAKEDI); }MACROE
/* Enums: */
/** Enum for the possible error return codes of the Pipe_WaitUntilReady function */
enum Pipe_WaitUntilReady_ErrorCodes_t
{
PIPE_READYWAIT_NoError = 0, /**< Pipe ready for next packet, no error */
PIPE_READYWAIT_PipeStalled = 1, /**< The device stalled the pipe while waiting. */
PIPE_READYWAIT_DeviceDisconnected = 2, /**< Device was disconnected from the host while waiting. */
PIPE_READYWAIT_Timeout = 3, /**< The device failed to accept or send the next packet
* within the software timeout period set by the
* USB_STREAM_TIMEOUT_MS macro.
*/
};
/** Enum for the possible error return codes of the Pipe_*_Stream_* functions. */
enum Pipe_Stream_RW_ErrorCodes_t
{
PIPE_RWSTREAM_ERROR_NoError = 0, /**< Command completed successfully, no error. */
PIPE_RWSTREAM_ERROR_PipeStalled = 1, /**< The device stalled the pipe during the transfer. */
PIPE_RWSTREAM_ERROR_DeviceDisconnected = 2, /**< Device was disconnected from the host during
* the transfer.
*/
PIPE_RWSTREAM_ERROR_Timeout = 3, /**< The device failed to accept or send the next packet
* within the software timeout period set by the
* USB_STREAM_TIMEOUT_MS macro.
*/
PIPE_RWSTREAM_ERROR_CallbackAborted = 4, /**< Indicates that the stream's callback function aborted
* the transfer early.
*/
};
/* Inline Functions: */
/** Reads one byte from the currently selected pipe's bank, for OUT direction pipes. */
static inline uint8_t Pipe_Read_Byte(void) ATTR_WARN_UNUSED_RESULT;
static inline uint8_t Pipe_Read_Byte(void)
{
return UPDATX;
}
/** Writes one byte from the currently selected pipe's bank, for IN direction pipes. */
static inline void Pipe_Write_Byte(const uint8_t Byte)
{
UPDATX = Byte;
}
/** Discards one byte from the currently selected pipe's bank, for OUT direction pipes. */
static inline void Pipe_Discard_Byte(void)
{
uint8_t Dummy;
Dummy = UPDATX;
}
/** Reads two bytes from the currently selected pipe's bank in little endian format, for OUT
* direction pipes.
*/
static inline uint16_t Pipe_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint16_t Pipe_Read_Word_LE(void)
{
uint16_t Data;
Data = UPDATX;
Data |= (((uint16_t)UPDATX) << 8);
return Data;
}
/** Reads two bytes from the currently selected pipe's bank in big endian format, for OUT
* direction pipes.
*/
static inline uint16_t Pipe_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint16_t Pipe_Read_Word_BE(void)
{
uint16_t Data;
Data = (((uint16_t)UPDATX) << 8);
Data |= UPDATX;
return Data;
}
/** Writes two bytes to the currently selected pipe's bank in little endian format, for IN
* direction pipes.
*/
static inline void Pipe_Write_Word_LE(const uint16_t Word)
{
UPDATX = (Word & 0xFF);
UPDATX = (Word >> 8);
}
/** Writes two bytes to the currently selected pipe's bank in big endian format, for IN
* direction pipes.
*/
static inline void Pipe_Write_Word_BE(const uint16_t Word)
{
UPDATX = (Word >> 8);
UPDATX = (Word & 0xFF);
}
/** Discards two bytes from the currently selected pipe's bank, for OUT direction pipes. */
static inline void Pipe_Ignore_Word(void)
{
uint8_t Dummy;
Dummy = UPDATX;
Dummy = UPDATX;
}
/** Reads four bytes from the currently selected pipe's bank in little endian format, for OUT
* direction pipes.
*/
static inline uint32_t Pipe_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint32_t Pipe_Read_DWord_LE(void)
{
union
{
uint32_t DWord;
uint8_t Bytes[4];
} Data;
Data.Bytes[0] = UPDATX;
Data.Bytes[1] = UPDATX;
Data.Bytes[2] = UPDATX;
Data.Bytes[3] = UPDATX;
return Data.DWord;
}
/** Reads four bytes from the currently selected pipe's bank in big endian format, for OUT
* direction pipes.
*/
static inline uint32_t Pipe_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT;
static inline uint32_t Pipe_Read_DWord_BE(void)
{
union
{
uint32_t DWord;
uint8_t Bytes[4];
} Data;
Data.Bytes[3] = UPDATX;
Data.Bytes[2] = UPDATX;
Data.Bytes[1] = UPDATX;
Data.Bytes[0] = UPDATX;
return Data.DWord;
}
/** Writes four bytes to the currently selected pipe's bank in little endian format, for IN
* direction pipes.
*/
static inline void Pipe_Write_DWord_LE(const uint32_t DWord)
{
Pipe_Write_Word_LE(DWord);
Pipe_Write_Word_LE(DWord >> 16);
}
/** Writes four bytes to the currently selected pipe's bank in big endian format, for IN
* direction pipes.
*/
static inline void Pipe_Write_DWord_BE(const uint32_t DWord)
{
Pipe_Write_Word_BE(DWord >> 16);
Pipe_Write_Word_BE(DWord);
}
/** Discards four bytes from the currently selected pipe's bank, for OUT direction pipes. */
static inline void Pipe_Ignore_DWord(void)
{
uint8_t Dummy;
Dummy = UPDATX;
Dummy = UPDATX;
Dummy = UPDATX;
Dummy = UPDATX;
}
/* External Variables: */
/** Global indicating the maximum packet size of the default control pipe located at address
* 0 in the device. This value is set to the value indicated in the attached device's device
* descriptor once the USB interface is initialized into host mode and a device is attached
* to the USB bus.
*
* \note This variable should be treated as read-only in the user application, and never manually
* changed in value.
*/
extern uint8_t USB_ControlPipeSize;
/* Function Prototypes: */
/** Configures the specified pipe number with the given pipe type, token, target endpoint number in the
* attached device, bank size and banking mode. Pipes should be allocated in ascending order by their
* address in the device (i.e. pipe 1 should be configured before pipe 2 and so on).
*
* The pipe type may be one of the EP_TYPE_* macros listed in LowLevel.h, the token may be one of the
* PIPE_TOKEN_* masks.
*
* The bank size must indicate the maximum packet size that the pipe can handle. Different pipe
* numbers can handle different maximum packet sizes - refer to the chosen USB AVR's datasheet to
* determine the maximum bank size for each pipe.
*
* The banking mode may be either PIPE_BANK_SINGLE or PIPE_BANK_DOUBLE.
*
* A newly configured pipe is frozen by default, and must be unfrozen before use via the Pipe_Unfreeze() macro.
*
* \note This routine will select the specified pipe, and the pipe will remain selected once the
* routine completes regardless of if the pipe configuration succeeds.
*
* \return Boolean true if the configuration is successful, false otherwise
*/
bool Pipe_ConfigurePipe(const uint8_t Number, const uint8_t Type, const uint8_t Token, const uint8_t EndpointNumber,
const uint16_t Size, const uint8_t Banks);
/** Spinloops until the currently selected non-control pipe is ready for the next packed of data
* to be read or written to it.
*
* \note This routine should not be called on CONTROL type pipes.
*
* \return A value from the Pipe_WaitUntilReady_ErrorCodes_t enum.
*/
uint8_t Pipe_WaitUntilReady(void);
/** Writes the given number of bytes to the pipe from the given buffer in little endian,
* sending full packets to the device as needed. The last packet filled is not automatically sent;
* the user is responsible for manually sending the last written packet to the host via the
* Pipe_ClearCurrentBank() macro. Between each USB packet, the given stream callback function is
* executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \param Buffer Pointer to the source data buffer to read from.
* \param Length Number of bytes to read for the currently selected pipe into the buffer.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Pipe_Write_Stream_LE(const void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Writes the given number of bytes to the pipe from the given buffer in big endian,
* sending full packets to the device as needed. The last packet filled is not automatically sent;
* the user is responsible for manually sending the last written packet to the host via the
* Pipe_ClearCurrentBank() macro. Between each USB packet, the given stream callback function is
* executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \param Buffer Pointer to the source data buffer to read from.
* \param Length Number of bytes to read for the currently selected pipe into the buffer.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Pipe_Write_Stream_BE(const void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Reads and discards the given number of bytes from the pipe, discarding fully read packets from the host
* as needed. The last packet is not automatically discarded once the remaining bytes has been read; the
* user is responsible for manually discarding the last packet from the host via the Pipe_ClearCurrentBank() macro.
* Between each USB packet, the given stream callback function is executed repeatedly until the next packet is ready,
* allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \param Length Number of bytes to send via the currently selected pipe.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Pipe_Discard_Stream(uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
);
/** Reads the given number of bytes from the pipe into the given buffer in little endian,
* sending full packets to the device as needed. The last packet filled is not automatically sent;
* the user is responsible for manually sending the last written packet to the host via the
* Pipe_ClearCurrentBank() macro. Between each USB packet, the given stream callback function is
* executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \param Buffer Pointer to the source data buffer to write to.
* \param Length Number of bytes to read for the currently selected pipe to read from.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Pipe_Read_Stream_LE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/** Reads the given number of bytes from the pipe into the given buffer in big endian,
* sending full packets to the device as needed. The last packet filled is not automatically sent;
* the user is responsible for manually sending the last written packet to the host via the
* Pipe_ClearCurrentBank() macro. Between each USB packet, the given stream callback function is
* executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
*
* The callback routine should be created using the STREAM_CALLBACK() macro. If the token
* NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
* and this function has the Callback parameter ommitted.
*
* \param Buffer Pointer to the source data buffer to write to.
* \param Length Number of bytes to read for the currently selected pipe to read from.
* \param Callback Name of a callback routine to call between sucessive USB packet transfers, NULL if no callback
*
* \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
*/
uint8_t Pipe_Read_Stream_BE(void* Buffer, uint16_t Length
#if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
, uint8_t (* const Callback)(void)
#endif
) ATTR_NON_NULL_PTR_ARG(1);
/* Function Aliases: */
/** Alias for Pipe_Discard_Byte().
*/
#define Pipe_Ignore_Byte() Pipe_Discard_Byte()
/** Alias for Pipe_Discard_Word().
*/
#define Pipe_Ignore_Word() Pipe_Discard_Word()
/** Alias for Pipe_Discard_DWord().
*/
#define Pipe_Ignore_DWord() Pipe_Discard_DWord()
/** Alias for Pipe_Read_Word_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Pipe_Read_Word() Pipe_Read_Word_LE()
/** Alias for Pipe_Write_Word_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Pipe_Write_Word(Word) Pipe_Write_Word_LE(Word)
/** Alias for Pipe_Read_DWord_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Pipe_Read_DWord() Pipe_Read_DWord_LE()
/** Alias for Pipe_Write_DWord_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#define Pipe_Write_DWord(DWord) Pipe_Write_DWord_LE(DWord)
/** Alias for Pipe_Read_Stream_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#if !defined(NO_STREAM_CALLBACKS)
#define Pipe_Read_Stream(Buffer, Length, Callback) Pipe_Read_Stream_LE(Buffer, Length, Callback)
#else
#define Pipe_Read_Stream(Buffer, Length) Pipe_Read_Stream_LE(Buffer, Length)
#endif
/** Alias for Pipe_Write_Stream_LE(). By default USB transfers use little endian format, thus
* the command with no endianness specifier indicates little endian mode.
*/
#if !defined(NO_STREAM_CALLBACKS)
#define Pipe_Write_Stream(Buffer, Length, Callback) Pipe_Read_Stream_LE(Buffer, Length, Callback)
#else
#define Pipe_Write_Stream(Buffer, Length) Pipe_Read_Stream_LE(Buffer, Length)
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define PIPE_TOKEN_MASK (0x03 << PTOKEN0)
#define Pipe_AllocateMemory() MACROS{ UPCFG1X |= (1 << ALLOC); }MACROE
#define Pipe_DeallocateMemory() MACROS{ UPCFG1X &= ~(1 << ALLOC); }MACROE
/* Function Prototypes: */
void Pipe_ClearPipes(void);
/* Inline Functions: */
static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYSINLINE;
static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes)
{
if (Bytes <= 8)
return (0 << EPSIZE0);
else if (Bytes <= 16)
return (1 << EPSIZE0);
else if (Bytes <= 32)
return (2 << EPSIZE0);
else if (Bytes <= 64)
return (3 << EPSIZE0);
else if (Bytes <= (8 << 4))
return (4 << EPSIZE0);
else
return (5 << EPSIZE0);
};
#endif
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,191 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Contains definitions for the various control request parameters, so that the request details (such as data
* direction, request recipient, etc.) can be extracted via masking.
*/
#ifndef __STDREQTYPE_H__
#define __STDREQTYPE_H__
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Mask for the request type parameter, to indicate the direction of the request data (Host to Device
* or Device to Host). The result of this mask should then be compared to the request direction masks.
*
* \see REQDIR_* macros for masks indicating the request data direction.
*/
#define CONTROL_REQTYPE_DIRECTION 0b10000000
/** Mask for the request type parameter, to indicate the type of request (Device, Class or Vendor
* Specific). The result of this mask should then be compared to the request type masks.
*
* \see REQTYPE_* macros for masks indicating the request type.
*/
#define CONTROL_REQTYPE_TYPE 0b01100000
/** Mask for the request type parameter, to indicate the recipient of the request (Standard, Class
* or Vendor Specific). The result of this mask should then be compared to the request recipient
* masks.
*
* \see REQREC_* macros for masks indicating the request recipient.
*/
#define CONTROL_REQTYPE_RECIPIENT 0b00011111
/** Request data direction mask, indicating that the request data will flow from host to device.
*
* \see CONTROL_REQTYPE_DIRECTION macro.
*/
#define REQDIR_HOSTTODEVICE (0 << 7)
/** Request data direction mask, indicating that the request data will flow from device to host.
*
* \see CONTROL_REQTYPE_DIRECTION macro.
*/
#define REQDIR_DEVICETOHOST (1 << 7)
/** Request type mask, indicating that the request is a standard request.
*
* \see CONTROL_REQTYPE_TYPE macro.
*/
#define REQTYPE_STANDARD (0 << 5)
/** Request type mask, indicating that the request is a class-specific request.
*
* \see CONTROL_REQTYPE_TYPE macro.
*/
#define REQTYPE_CLASS (1 << 5)
/** Request type mask, indicating that the request is a vendor specific request.
*
* \see CONTROL_REQTYPE_TYPE macro.
*/
#define REQTYPE_VENDOR (2 << 5)
/** Request recipient mask, indicating that the request is to be issued to the device as a whole.
*
* \see CONTROL_REQTYPE_RECIPIENT macro.
*/
#define REQREC_DEVICE (0 << 0)
/** Request recipient mask, indicating that the request is to be issued to an interface in the
* currently selected configuration.
*
* \see CONTROL_REQTYPE_RECIPIENT macro.
*/
#define REQREC_INTERFACE (1 << 0)
/** Request recipient mask, indicating that the request is to be issued to an endpoint in the
* currently selected configuration.
*
* \see CONTROL_REQTYPE_RECIPIENT macro.
*/
#define REQREC_ENDPOINT (2 << 0)
/** Request recipient mask, indicating that the request is to be issued to an unspecified element
* in the currently selected configuration.
*
* \see CONTROL_REQTYPE_RECIPIENT macro.
*/
#define REQREC_OTHER (3 << 0)
/** Feature indicator for Clear Feature or Set Feature commands. When used in a Clear Feature
* request this indicates that an endpoint (whose address is given elsewhere in the request
* should have its stall condition cleared. If used in a similar manner inside a Set Feature
* request, this stalls an endpoint.
*/
#define FEATURE_ENDPOINT_HALT 0x00
/** Feature indicator for Clear Feature or Set Feature commands. When used in a Clear Feature
* request this indicates that the remote wakeup enabled device should not issue remote
* wakeup requests until further notice. If used in a similar manner inside a Set Feature
* request, this re-enabled the remote wakeup feature on the device.
*/
#define FEATURE_REMOTE_WAKEUP 0x01
/* Enums: */
/** Enumeration for the various standard request commands. These commands are applicable when the
* request type is REQTYPE_STANDARD (with the exception of REQ_GetDescriptor, which is always
* handled regardless of the request type value).
*
* \see Chapter 9 of the USB 2.0 Specification.
*/
enum USB_Control_Request_t
{
REQ_GetStatus = 0, /**< Implemented in the library for device, endpoint and interface
* recipients. Passed to the user application for other recipients
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_ClearFeature = 1, /**< Implemented in the library for device, endpoint and interface
* recipients. Passed to the user application for other recipients
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_SetFeature = 3, /**< Implemented in the library for device, endpoint and interface
* recipients. Passed to the user application for other recipients
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_SetAddress = 5, /**< Implemented in the library for the device recipient. Passed
* to the user application for other recipients via the
* USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_GetDescriptor = 6, /**< Implemented in the library for all recipients and all request
* types. */
REQ_SetDescriptor = 7, /**< Not implemented in the library, passed to the user application
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_GetConfiguration = 8, /**< Implemented in the library for the device recipient. Passed
* to the user application for other recipients via the
* USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_SetConfiguration = 9, /**< Implemented in the library for the device recipient. Passed
* to the user application for other recipients via the
* USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_GetInterface = 10, /**< Not implemented in the library, passed to the user application
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_SetInterface = 11, /**< Not implemented in the library, passed to the user application
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
REQ_SynchFrame = 12, /**< Not implemented in the library, passed to the user application
* via the USB_UnhandledControlPacket() event when received in
* device mode. */
};
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define FEATURE_SELFPOWERED_ENABLED (1 << 0)
#define FEATURE_REMOTE_WAKEUP_ENABLED (1 << 1)
#endif
#endif

View file

@ -0,0 +1,87 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Macros and enums for the stream callback routines in Endpoint.h and Pipe.c. This module contains the
* code required to easily set up stream callback functions which can be used to force early abort of a
* stream read/write process.
*/
#ifndef __STREAMCALLBACK_H__
#define __STREAMCALLBACK_H__
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Creates a prototype for or begins a stream callback routine. Stream callback routines are small
* routines which are executed during stream read or writes (if the callback-enabled versions of
* these functions are used) which allow the user application to abort the transfer when certain
* arbitrary conditions are met.
*
* Stream callback functions should return a value from the StreamCallback_Return_ErrorCodes_t
* enum.
*
* Usage Example (Device Endpoint, but applicable for Host pipes also):
* \code
* STREAM_CALLBACK(GlobalNotSet); // Callback Prototype
*
* STREAM_CALLBACK(GlobalNotSet)
* {
* if (MyGlobal == false)
* return ENDPOINT_STREAMCALLBACK_Continue;
* else
* return ENDPOINT_STREAMCALLBACK_Abort;
* }
*
* //...
* // Inside some routine:
* if (Endpoint_Write_CStream_LE(DataBuffer, sizeof(DataBuffer), GlobalNotSet) ==
* ENDPOINT_RWSTREAM_ERROR_CallbackAborted)
* {
* // Do something when the callback aborted the transfer early
* }
* \endcode
*/
#define STREAM_CALLBACK(name) uint8_t name (void)
/** Used with the Endpoint and Pipe stream functions as the callback function parameter, indicating that the stream
* call has no callback function to be called between USB packets.
*/
#define NO_STREAM_CALLBACK NULL
/* Enums: */
/** Enum for the possible error return codes of a stream callback function */
enum StreamCallback_Return_ErrorCodes_t
{
STREAMCALLBACK_Continue = 0, /**< Continue sending or receiving the stream. */
STREAMCALLBACK_Abort = 1, /**< Abort the stream send or reciving process. */
};
#endif

View file

@ -0,0 +1,77 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2009.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
#ifndef __USBMODE_H__
#define __USBMODE_H__
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#if ((defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB162__) || defined(__AVR_AT90USB82__) || \
defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || \
defined(__AVR_ATmega32U6__)) && !defined(USB_DEVICE_ONLY))
#define USB_DEVICE_ONLY
#endif
#if (defined(__AVR_AT90USB162__) || defined(__AVR_AT90USB82__))
#define USB_LIMITED_CONTROLLER
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
#define USB_MODIFIED_FULL_CONTROLLER
#else
#define USB_FULL_CONTROLLER
#endif
#if (!defined(USB_DEVICE_ONLY) && !defined(USB_HOST_ONLY))
#define USB_CAN_BE_BOTH
#define USB_CAN_BE_HOST
#define USB_CAN_BE_DEVICE
#elif defined(USB_HOST_ONLY)
#define USB_CAN_BE_HOST
#define USB_CurrentMode USB_MODE_HOST
#elif defined(USB_DEVICE_ONLY)
#define USB_CAN_BE_DEVICE
#define USB_CurrentMode USB_MODE_DEVICE
#endif
#if (defined(USB_HOST_ONLY) && defined(USB_DEVICE_ONLY))
#error USB_HOST_ONLY and USB_DEVICE_ONLY are mutually exclusive.
#endif
#if (defined(USB_RAM_DESCRIPTORS) && defined(USE_EEPROM_DESCRIPTORS))
#error USB_RAM_DESCRIPTORS and USE_EEPROM_DESCRIPTORS are mutually exclusive.
#endif
#if defined(USE_STATIC_OPTIONS)
#define USB_Options USE_STATIC_OPTIONS
#endif
#endif
#endif