Add new ARCH option to the makefiles to (eventually) specify the target device architecture. Update non-usb peripheral drivers to reflect future multiple architecture support.

This commit is contained in:
Dean Camera 2011-02-19 18:37:22 +00:00
parent 100a197d0e
commit 3d4d8e7f62
196 changed files with 1271 additions and 730 deletions

View file

@ -31,22 +31,23 @@
/** \file
* \brief Master include file for the ADC peripheral driver.
*
* This file is the master dispatch header file for the device-specific ADC driver, for AVRs containing an ADC.
* This file is the master dispatch header file for the device-specific ADC driver, for microcontrollers
* containing an ADC.
*
* User code should include this file, which will in turn include the correct ADC driver header file for the
* currently selected AVR model.
* currently selected architecture and microcontroller model.
*/
/** \ingroup Group_PeripheralDrivers
* @defgroup Group_ADC ADC Driver - LUFA/Drivers/Peripheral/ADC.h
* \defgroup Group_ADC ADC Driver - LUFA/Drivers/Peripheral/ADC.h
*
* \section Sec_Dependencies Module Source Dependencies
* The following files must be built with any user project that uses this module:
* - None
*
* \section Sec_ModDescription Module Description
* Hardware ADC driver. This module provides an easy to use driver for the hardware
* ADC present on many AVR models, for the conversion of analogue signals into the
* Hardware ADC driver. This module provides an easy to use driver for the hardware ADC
* present on many microcontrollers, for the conversion of analogue signals into the
* digital domain.
*
* \note The exact API for this driver may vary depending on the target used - see
@ -57,18 +58,18 @@
#define __ADC_H__
/* Macros: */
#if !defined(__DOXYGEN__)
#define __INCLUDE_FROM_ADC_H
#endif
#if !defined(__DOXYGEN__)
#define __INCLUDE_FROM_ADC_H
#endif
/* Includes: */
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || \
defined(__AVR_ATmega32U6__))
#include "AVRU4U6U7/ADC.h"
#include "../../Common/Common.h"
/* Includes: */
#if (ARCH == ARCH_AVR8)
#include "AVR8/ADC.h"
#else
#error "ADC is not available for the currently selected AVR model."
#error The ADC peripheral driver is not currently available for your selected architecture.
#endif
#endif

View file

@ -29,7 +29,7 @@
*/
/** \file
* \brief ADC peripheral driver for the U7, U6 and U4 USB AVRs.
* \brief ADC Peripheral Driver (AVR8)
*
* On-chip Analogue-to-Digital converter (ADC) driver for supported U4, U6 and U7 model AVRs that contain an ADC
* peripheral internally.
@ -39,8 +39,9 @@
*/
/** \ingroup Group_ADC
* @defgroup Group_ADC_AVRU4U6U7 Series U4, U6 and U7 Model ADC Driver
* \defgroup Group_ADC_AVR8 ADC Peripheral Driver (AVR8)
*
* \section Sec_ModDescription Module Description
* On-chip Analogue-to-Digital converter (ADC) driver for supported U4, U6 and U7 model AVRs that contain an ADC
* peripheral internally.
*
@ -71,15 +72,12 @@
* @{
*/
#ifndef __ADC_AVRU4U6U7_H__
#define __ADC_AVRU4U6U7_H__
#ifndef __ADC_AVR8_H__
#define __ADC_AVR8_H__
/* Includes: */
#include "../../../Common/Common.h"
#include <avr/io.h>
#include <stdbool.h>
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
@ -90,6 +88,13 @@
#error Do not include this file directly. Include LUFA/Drivers/Peripheral/ADC.h instead.
#endif
#if !(defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || \
defined(__AVR_ATmega32U6__))
#error The ADC peripheral driver is not currently available for your selected microcontroller model.
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */

View file

@ -0,0 +1,239 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
* \brief SPI Peripheral Driver (AVR8)
*
* On-chip SPI driver for the 8-bit AVR microcontrollers.
*
* \note This file should not be included directly. It is automatically included as needed by the SPI driver
* dispatch header located in LUFA/Drivers/Peripheral/SPI.h.
*/
/** \ingroup Group_SPI
* \defgroup Group_SPI_AVR8 SPI Peripheral Driver (AVR8)
*
* \section Sec_ModDescription Module Description
* Driver for the hardware SPI port available on most 8-bit AVR microcontroller models. This
* module provides an easy to use driver for the setup and transfer of data over the
* AVR's SPI port.
*
* \note This file should not be included directly. It is automatically included as needed by the SPI driver
* dispatch header located in LUFA/Drivers/Peripheral/SPI.h.
*
* \section Sec_ExampleUsage Example Usage
* The following snippet is an example of how this module may be used within a typical
* application.
*
* \code
* // Initialise the SPI driver before first use
* SPI_Init(SPI_SPEED_FCPU_DIV_2 | SPI_ORDER_MSB_FIRST | SPI_SCK_LEAD_FALLING |
* SPI_SAMPLE_TRAILING | SPI_MODE_MASTER);
*
* // Send several bytes, ignoring the returned data
* SPI_SendByte(0x01);
* SPI_SendByte(0x02);
* SPI_SendByte(0x03);
*
* // Receive several bytes, sending a dummy 0x00 byte each time
* uint8_t Byte1 = SPI_ReceiveByte();
* uint8_t Byte2 = SPI_ReceiveByte();
* uint8_t Byte3 = SPI_ReceiveByte();
*
* // Send a byte, and store the received byte from the same transaction
* uint8_t ResponseByte = SPI_TransferByte(0xDC);
* \endcode
*
* @{
*/
#ifndef __SPI_AVR8_H__
#define __SPI_AVR8_H__
/* Includes: */
#include "../../../Common/Common.h"
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Preprocessor Checks: */
#if !defined(__INCLUDE_FROM_SPI_H)
#error Do not include this file directly. Include LUFA/Drivers/Peripheral/SPI.h instead.
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define SPI_USE_DOUBLESPEED (1 << SPE)
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** \name SPI Prescaler Configuration Masks */
//@{
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 2. */
#define SPI_SPEED_FCPU_DIV_2 SPI_USE_DOUBLESPEED
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 4. */
#define SPI_SPEED_FCPU_DIV_4 0
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 8. */
#define SPI_SPEED_FCPU_DIV_8 (SPI_USE_DOUBLESPEED | (1 << SPR0))
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 16. */
#define SPI_SPEED_FCPU_DIV_16 (1 << SPR0)
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 32. */
#define SPI_SPEED_FCPU_DIV_32 (SPI_USE_DOUBLESPEED | (1 << SPR1))
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 64. */
#define SPI_SPEED_FCPU_DIV_64 (SPI_USE_DOUBLESPEED | (1 << SPR1) | (1 << SPR0))
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 128. */
#define SPI_SPEED_FCPU_DIV_128 ((1 << SPR1) | (1 << SPR0))
//@}
/** \name SPI SCK Polarity Configuration Masks */
//@{
/** SPI clock polarity mask for \c SPI_Init(). Indicates that the SCK should lead on the rising edge. */
#define SPI_SCK_LEAD_RISING (0 << CPOL)
/** SPI clock polarity mask for \c SPI_Init(). Indicates that the SCK should lead on the falling edge. */
#define SPI_SCK_LEAD_FALLING (1 << CPOL)
//@}
/** \name SPI Sample Edge Configuration Masks */
//@{
/** SPI data sample mode mask for \c SPI_Init(). Indicates that the data should sampled on the leading edge. */
#define SPI_SAMPLE_LEADING (0 << CPHA)
/** SPI data sample mode mask for \c SPI_Init(). Indicates that the data should be sampled on the trailing edge. */
#define SPI_SAMPLE_TRAILING (1 << CPHA)
//@}
/** \name SPI Data Ordering Configuration Masks */
//@{
/** SPI data order mask for \c SPI_Init(). Indicates that data should be shifted out MSB first. */
#define SPI_ORDER_MSB_FIRST (0 << DORD)
/** SPI data order mask for \c SPI_Init(). Indicates that data should be shifted out MSB first. */
#define SPI_ORDER_LSB_FIRST (1 << DORD)
//@}
/** \name SPI Mode Configuration Masks */
//@{
/** SPI mode mask for \c SPI_Init(). Indicates that the SPI interface should be initialized into slave mode. */
#define SPI_MODE_SLAVE (0 << MSTR)
/** SPI mode mask for \c SPI_Init(). Indicates that the SPI interface should be initialized into master mode. */
#define SPI_MODE_MASTER (1 << MSTR)
//@}
/* Inline Functions: */
/** Initialises the SPI subsystem, ready for transfers. Must be called before calling any other
* SPI routines.
*
* \param[in] SPIOptions SPI Options, a mask consisting of one of each of the \c SPI_SPEED_*,
* \c SPI_SCK_*, \c SPI_SAMPLE_*, \c SPI_ORDER_* and \c SPI_MODE_* masks.
*/
static inline void SPI_Init(const uint8_t SPIOptions)
{
DDRB |= ((1 << 1) | (1 << 2));
DDRB &= ~((1 << 0) | (1 << 3));
PORTB |= ((1 << 0) | (1 << 3));
SPCR = ((1 << SPE) | SPIOptions);
if (SPIOptions & SPI_USE_DOUBLESPEED)
SPSR |= (1 << SPI2X);
else
SPSR &= ~(1 << SPI2X);
}
/** Turns off the SPI driver, disabling and returning used hardware to their default configuration. */
static inline void SPI_Disable(void)
{
DDRB &= ~((1 << 1) | (1 << 2));
PORTB &= ~((1 << 0) | (1 << 3));
SPCR = 0;
SPSR = 0;
}
/** Sends and receives a byte through the SPI interface, blocking until the transfer is complete.
*
* \param[in] Byte Byte to send through the SPI interface.
*
* \return Response byte from the attached SPI device.
*/
static inline uint8_t SPI_TransferByte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
static inline uint8_t SPI_TransferByte(const uint8_t Byte)
{
SPDR = Byte;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
/** Sends a byte through the SPI interface, blocking until the transfer is complete. The response
* byte sent to from the attached SPI device is ignored.
*
* \param[in] Byte Byte to send through the SPI interface.
*/
static inline void SPI_SendByte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
static inline void SPI_SendByte(const uint8_t Byte)
{
SPDR = Byte;
while (!(SPSR & (1 << SPIF)));
}
/** Sends a dummy byte through the SPI interface, blocking until the transfer is complete. The response
* byte from the attached SPI device is returned.
*
* \return The response byte from the attached SPI device.
*/
static inline uint8_t SPI_ReceiveByte(void) ATTR_ALWAYS_INLINE ATTR_WARN_UNUSED_RESULT;
static inline uint8_t SPI_ReceiveByte(void)
{
SPDR = 0x00;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif
/** @} */

View file

@ -28,6 +28,7 @@
this software.
*/
#define __INCLUDE_FROM_SERIAL_C
#include "Serial.h"
FILE USARTSerialStream;

View file

@ -0,0 +1,251 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
* \brief Serial USART Peripheral Driver (AVR8)
*
* On-chip serial USART driver for the 8-bit AVR microcontrollers.
*
* \note This file should not be included directly. It is automatically included as needed by the USART driver
* dispatch header located in LUFA/Drivers/Peripheral/Serial.h.
*/
/** \ingroup Group_Serial
* \defgroup Group_Serial_AVR8 Serial USART Peripheral Driver (AVR8)
*
* \section Sec_ModDescription Module Description
* On-chip serial USART driver for the 8-bit AVR microcontrollers.
*
* \note This file should not be included directly. It is automatically included as needed by the ADC driver
* dispatch header located in LUFA/Drivers/Peripheral/Serial.h.
*
* \section Sec_ExampleUsage Example Usage
* The following snippet is an example of how this module may be used within a typical
* application.
*
* \code
* // Initialise the serial USART driver before first use, with 9600 baud (and no double-speed mode)
* Serial_Init(9600, false);
*
* // Send a string through the USART
* Serial_TxString("Test String\r\n");
*
* // Receive a byte through the USART
* uint8_t DataByte = Serial_RxByte();
* \endcode
*
* @{
*/
#ifndef __SERIAL_AVR8_H__
#define __SERIAL_AVR8_H__
/* Includes: */
#include "../../../Common/Common.h"
#include "../../Misc/TerminalCodes.h"
#include <stdio.h>
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
#endif
/* Preprocessor Checks: */
#if !defined(__INCLUDE_FROM_SERIAL_H) && !defined(__INCLUDE_FROM_SERIAL_C)
#error Do not include this file directly. Include LUFA/Drivers/Peripheral/Serial.h instead.
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* External Variables: */
extern FILE USARTSerialStream;
/* Function Prototypes: */
int Serial_putchar(char DataByte,
FILE *Stream);
int Serial_getchar(FILE *Stream);
int Serial_getchar_Blocking(FILE *Stream);
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Macro for calculating the baud value from a given baud rate when the U2X (double speed) bit is
* not set.
*/
#define SERIAL_UBBRVAL(baud) ((((F_CPU / 16) + (baud / 2)) / (baud)) - 1)
/** Macro for calculating the baud value from a given baud rate when the U2X (double speed) bit is
* set.
*/
#define SERIAL_2X_UBBRVAL(baud) ((((F_CPU / 8) + (baud / 2)) / (baud)) - 1)
/* Function Prototypes: */
/** Transmits a given string located in program space (FLASH) through the USART.
*
* \param[in] FlashStringPtr Pointer to a string located in program space.
*/
void Serial_SendString_P(const char* FlashStringPtr) ATTR_NON_NULL_PTR_ARG(1);
/** Transmits a given string located in SRAM memory through the USART.
*
* \param[in] StringPtr Pointer to a string located in SRAM space.
*/
void Serial_SendString(const char* StringPtr) ATTR_NON_NULL_PTR_ARG(1);
/** Transmits a given buffer located in SRAM memory through the USART.
*
* \param[in] Buffer Pointer to a buffer containing the data to send.
* \param[in] Length Length of the data to send, in bytes.
*/
void Serial_SendData(const uint8_t* Buffer, uint16_t Length) ATTR_NON_NULL_PTR_ARG(1);
/* Inline Functions: */
/** Initializes the USART, ready for serial data transmission and reception. This initializes the interface to
* standard 8-bit, no parity, 1 stop bit settings suitable for most applications.
*
* \param[in] BaudRate Serial baud rate, in bits per second.
* \param[in] DoubleSpeed Enables double speed mode when set, halving the sample time to double the baud rate.
*/
static inline void Serial_Init(const uint32_t BaudRate,
const bool DoubleSpeed)
{
UBRR1 = (DoubleSpeed ? SERIAL_2X_UBBRVAL(BaudRate) : SERIAL_UBBRVAL(BaudRate));
UCSR1C = ((1 << UCSZ11) | (1 << UCSZ10));
UCSR1A = (DoubleSpeed ? (1 << U2X1) : 0);
UCSR1B = ((1 << TXEN1) | (1 << RXEN1));
DDRD |= (1 << 3);
PORTD |= (1 << 2);
}
/** Turns off the USART driver, disabling and returning used hardware to their default configuration. */
static inline void Serial_Disable(void)
{
UCSR1B = 0;
UCSR1A = 0;
UCSR1C = 0;
UBRR1 = 0;
DDRD &= ~(1 << 3);
PORTD &= ~(1 << 2);
}
/** Creates a standard character stream from the USART so that it can be used with all the regular functions
* in the avr-libc \c <stdio.h> library that accept a \c FILE stream as a destination (e.g. \c fprintf). The created
* stream is bidirectional and can be used for both input and output functions.
*
* Reading data from this stream is non-blocking, i.e. in most instances, complete strings cannot be read in by a single
* fetch, as the endpoint will not be ready at some point in the transmission, aborting the transfer. However, this may
* be used when the read data is processed byte-per-bye (via \c getc()) or when the user application will implement its own
* line buffering.
*
* \param[in,out] Stream Pointer to a FILE structure where the created stream should be placed, if \c NULL stdio
* and stdin will be configured to use the USART.
*
* \pre The USART must first be configured via a call to \ref Serial_Init() before the stream is used.
*/
static inline void Serial_CreateStream(FILE* Stream)
{
if (!(Stream))
{
Stream = &USARTSerialStream;
stdin = Stream;
stdout = Stream;
}
*Stream = (FILE)FDEV_SETUP_STREAM(Serial_putchar, Serial_getchar, _FDEV_SETUP_RW);
}
/** Identical to \ref Serial_CreateStream(), except that reads are blocking until the calling stream function terminates
* the transfer.
*
* \param[in,out] Stream Pointer to a FILE structure where the created stream should be placed, if \c NULL stdio
* and stdin will be configured to use the USART.
*
* \pre The USART must first be configured via a call to \ref Serial_Init() before the stream is used.
*/
static inline void Serial_CreateBlockingStream(FILE* Stream)
{
if (!(Stream))
{
Stream = &USARTSerialStream;
stdin = Stream;
stdout = Stream;
}
*Stream = (FILE)FDEV_SETUP_STREAM(Serial_putchar, Serial_getchar_Blocking, _FDEV_SETUP_RW);
}
/** Indicates whether a character has been received through the USART.
*
* \return Boolean \c true if a character has been received, \c false otherwise.
*/
static inline bool Serial_IsCharReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Serial_IsCharReceived(void)
{
return ((UCSR1A & (1 << RXC1)) ? true : false);
}
/** Transmits a given byte through the USART.
*
* \param[in] DataByte Byte to transmit through the USART.
*/
static inline void Serial_SendByte(const char DataByte) ATTR_ALWAYS_INLINE;
static inline void Serial_SendByte(const char DataByte)
{
while (!(UCSR1A & (1 << UDRE1)));
UDR1 = DataByte;
}
/** Receives the next byte from the USART.
*
* \return Next byte received from the USART, or a negative value if no byte has been received.
*/
static inline int16_t Serial_ReceiveByte(void) ATTR_ALWAYS_INLINE;
static inline int16_t Serial_ReceiveByte(void)
{
if (!(Serial_IsCharReceived()))
return -1;
return UDR1;
}
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
#endif
#endif
/** @} */

View file

@ -5,6 +5,7 @@
www.lufa-lib.org
*/
#define __INCLUDE_FROM_TWI_C
#include "TWI.h"
uint8_t TWI_StartTransmission(const uint8_t SlaveAddress,

View file

@ -29,18 +29,19 @@
*/
/** \file
* \brief TWI peripheral driver for the U7, U6 and U4 USB AVRs.
* \brief TWI Peripheral Driver (AVR8)
*
* Master mode TWI driver for the AT90USB1287, AT90USB1286, AT90USB647, AT90USB646, ATMEGA16U4 and ATMEGA32U4 AVRs.
* On-chip TWI driver for the 8-bit AVR microcontrollers.
*
* \note This file should not be included directly. It is automatically included as needed by the TWI driver
* dispatch header located in LUFA/Drivers/Peripheral/TWI.h.
*/
/** \ingroup Group_TWI
* @defgroup Group_TWI_AVRU4U6U7 Series U4, U6 and U7 Model TWI Driver
* \defgroup Group_TWI_AVR8 TWI Peripheral Driver (AVR8)
*
* Master mode TWI driver for the AT90USB1287, AT90USB1286, AT90USB647, AT90USB646, ATMEGA16U4 and ATMEGA32U4 AVRs.
* \section Sec_ModDescription Module Description
* Master mode TWI driver for the 8-bit AVR microcontrollers which contain a hardware TWI module.
*
* \note This file should not be included directly. It is automatically included as needed by the TWI driver
* dispatch header located in LUFA/Drivers/Peripheral/TWI.h.
@ -111,17 +112,14 @@
* @{
*/
#ifndef __TWI_AVRU4U6U7_H__
#define __TWI_AVRU4U6U7_H__
#ifndef __TWI_AVR8_H__
#define __TWI_AVR8_H__
/* Includes: */
#include "../../../Common/Common.h"
#include <avr/io.h>
#include <stdbool.h>
#include <stdio.h>
#include <util/twi.h>
#include <util/delay.h>
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
@ -129,10 +127,17 @@
#endif
/* Preprocessor Checks: */
#if !defined(__INCLUDE_FROM_TWI_H)
#if !defined(__INCLUDE_FROM_TWI_H) && !defined(__INCLUDE_FROM_TWI_C)
#error Do not include this file directly. Include LUFA/Drivers/Peripheral/TWI.h instead.
#endif
#if !(defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || \
defined(__AVR_ATmega32U6__))
#error The TWI peripheral driver is not currently available for your selected microcontroller model.
#endif
/* Public Interface - May be used in end-application: */
/* Macros: */
/** TWI slave device address mask for a read session. Mask with a slave device base address to obtain

View file

@ -31,201 +31,44 @@
/** \file
* \brief Master include file for the SPI peripheral driver.
*
* Hardware SPI subsystem driver for the supported USB AVRs models.
* This file is the master dispatch header file for the device-specific SPI driver, for microcontrollers
* containing a hardware SPI.
*
* User code should include this file, which will in turn include the correct SPI driver header file for the
* currently selected architecture and microcontroller model.
*/
/** \ingroup Group_PeripheralDrivers
* @defgroup Group_SPI SPI Driver - LUFA/Drivers/Peripheral/SPI.h
* \defgroup Group_SPI SPI Driver - LUFA/Drivers/Peripheral/SPI.h
*
* \section Sec_Dependencies Module Source Dependencies
* The following files must be built with any user project that uses this module:
* - None
*
* \section Sec_ModDescription Module Description
* Driver for the hardware SPI port available on most AVR models. This module provides
* an easy to use driver for the setup of and transfer of data over the AVR's SPI port.
* Hardware SPI driver. This module provides an easy to use driver for the setup and transfer of data over
* the selected architecture and microcontroller model's SPI port.
*
* \section Sec_ExampleUsage Example Usage
* The following snippet is an example of how this module may be used within a typical
* application.
*
* \code
* // Initialise the SPI driver before first use
* SPI_Init(SPI_SPEED_FCPU_DIV_2 | SPI_ORDER_MSB_FIRST | SPI_SCK_LEAD_FALLING |
* SPI_SAMPLE_TRAILING | SPI_MODE_MASTER);
*
* // Send several bytes, ignoring the returned data
* SPI_SendByte(0x01);
* SPI_SendByte(0x02);
* SPI_SendByte(0x03);
*
* // Receive several bytes, sending a dummy 0x00 byte each time
* uint8_t Byte1 = SPI_ReceiveByte();
* uint8_t Byte2 = SPI_ReceiveByte();
* uint8_t Byte3 = SPI_ReceiveByte();
*
* // Send a byte, and store the received byte from the same transaction
* uint8_t ResponseByte = SPI_TransferByte(0xDC);
* \endcode
*
* @{
* \note The exact API for this driver may vary depending on the target used - see
* individual target module documentation for the API specific to your target processor.
*/
#ifndef __SPI_H__
#define __SPI_H__
/* Includes: */
#include <stdbool.h>
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
/* Macros: */
#if !defined(__DOXYGEN__)
#define __INCLUDE_FROM_SPI_H
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* Macros: */
#define SPI_USE_DOUBLESPEED (1 << SPE)
#endif
/* Includes: */
#include "../../Common/Common.h"
/* Public Interface - May be used in end-application: */
/* Macros: */
/** \name SPI Prescaler Configuration Masks */
//@{
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 2. */
#define SPI_SPEED_FCPU_DIV_2 SPI_USE_DOUBLESPEED
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 4. */
#define SPI_SPEED_FCPU_DIV_4 0
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 8. */
#define SPI_SPEED_FCPU_DIV_8 (SPI_USE_DOUBLESPEED | (1 << SPR0))
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 16. */
#define SPI_SPEED_FCPU_DIV_16 (1 << SPR0)
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 32. */
#define SPI_SPEED_FCPU_DIV_32 (SPI_USE_DOUBLESPEED | (1 << SPR1))
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 64. */
#define SPI_SPEED_FCPU_DIV_64 (SPI_USE_DOUBLESPEED | (1 << SPR1) | (1 << SPR0))
/** SPI prescaler mask for \c SPI_Init(). Divides the system clock by a factor of 128. */
#define SPI_SPEED_FCPU_DIV_128 ((1 << SPR1) | (1 << SPR0))
//@}
/** \name SPI SCK Polarity Configuration Masks */
//@{
/** SPI clock polarity mask for \c SPI_Init(). Indicates that the SCK should lead on the rising edge. */
#define SPI_SCK_LEAD_RISING (0 << CPOL)
/** SPI clock polarity mask for \c SPI_Init(). Indicates that the SCK should lead on the falling edge. */
#define SPI_SCK_LEAD_FALLING (1 << CPOL)
//@}
/** \name SPI Sample Edge Configuration Masks */
//@{
/** SPI data sample mode mask for \c SPI_Init(). Indicates that the data should sampled on the leading edge. */
#define SPI_SAMPLE_LEADING (0 << CPHA)
/** SPI data sample mode mask for \c SPI_Init(). Indicates that the data should be sampled on the trailing edge. */
#define SPI_SAMPLE_TRAILING (1 << CPHA)
//@}
/** \name SPI Data Ordering Configuration Masks */
//@{
/** SPI data order mask for \c SPI_Init(). Indicates that data should be shifted out MSB first. */
#define SPI_ORDER_MSB_FIRST (0 << DORD)
/** SPI data order mask for \c SPI_Init(). Indicates that data should be shifted out MSB first. */
#define SPI_ORDER_LSB_FIRST (1 << DORD)
//@}
/** \name SPI Mode Configuration Masks */
//@{
/** SPI mode mask for \c SPI_Init(). Indicates that the SPI interface should be initialized into slave mode. */
#define SPI_MODE_SLAVE (0 << MSTR)
/** SPI mode mask for \c SPI_Init(). Indicates that the SPI interface should be initialized into master mode. */
#define SPI_MODE_MASTER (1 << MSTR)
//@}
/* Inline Functions: */
/** Initialises the SPI subsystem, ready for transfers. Must be called before calling any other
* SPI routines.
*
* \param[in] SPIOptions SPI Options, a mask consisting of one of each of the \c SPI_SPEED_*,
* \c SPI_SCK_*, \c SPI_SAMPLE_*, \c SPI_ORDER_* and \c SPI_MODE_* masks.
*/
static inline void SPI_Init(const uint8_t SPIOptions)
{
DDRB |= ((1 << 1) | (1 << 2));
DDRB &= ~((1 << 0) | (1 << 3));
PORTB |= ((1 << 0) | (1 << 3));
SPCR = ((1 << SPE) | SPIOptions);
if (SPIOptions & SPI_USE_DOUBLESPEED)
SPSR |= (1 << SPI2X);
else
SPSR &= ~(1 << SPI2X);
}
/** Turns off the SPI driver, disabling and returning used hardware to their default configuration. */
static inline void SPI_Disable(void)
{
DDRB &= ~((1 << 1) | (1 << 2));
PORTB &= ~((1 << 0) | (1 << 3));
SPCR = 0;
SPSR = 0;
}
/** Sends and receives a byte through the SPI interface, blocking until the transfer is complete.
*
* \param[in] Byte Byte to send through the SPI interface.
*
* \return Response byte from the attached SPI device.
*/
static inline uint8_t SPI_TransferByte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
static inline uint8_t SPI_TransferByte(const uint8_t Byte)
{
SPDR = Byte;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
/** Sends a byte through the SPI interface, blocking until the transfer is complete. The response
* byte sent to from the attached SPI device is ignored.
*
* \param[in] Byte Byte to send through the SPI interface.
*/
static inline void SPI_SendByte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
static inline void SPI_SendByte(const uint8_t Byte)
{
SPDR = Byte;
while (!(SPSR & (1 << SPIF)));
}
/** Sends a dummy byte through the SPI interface, blocking until the transfer is complete. The response
* byte from the attached SPI device is returned.
*
* \return The response byte from the attached SPI device.
*/
static inline uint8_t SPI_ReceiveByte(void) ATTR_ALWAYS_INLINE ATTR_WARN_UNUSED_RESULT;
static inline uint8_t SPI_ReceiveByte(void)
{
SPDR = 0x00;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
/* Includes: */
#if (ARCH == ARCH_AVR8)
#include "AVR8/SPI.h"
#else
#error The SPI peripheral driver is not currently available for your selected architecture.
#endif
#endif
/** @} */

View file

@ -31,218 +31,44 @@
/** \file
* \brief Master include file for the USART peripheral driver.
*
* Driver for the USART subsystem on supported USB AVRs.
* This file is the master dispatch header file for the device-specific USART driver, for microcontrollers
* containing a hardware USART.
*
* User code should include this file, which will in turn include the correct ADC driver header file for the
* currently selected architecture and microcontroller model.
*/
/** \ingroup Group_PeripheralDrivers
* @defgroup Group_Serial Serial USART Driver - LUFA/Drivers/Peripheral/Serial.h
* \defgroup Group_Serial Serial USART Driver - LUFA/Drivers/Peripheral/Serial.h
*
* \section Sec_Dependencies Module Source Dependencies
* The following files must be built with any user project that uses this module:
* - LUFA/Drivers/Peripheral/Serial.c <i>(Makefile source module name: LUFA_SRC_SERIAL)</i>
* - LUFA/Drivers/Peripheral/$(ARCH)/Serial.c <i>(Makefile source module name: LUFA_SRC_SERIAL)</i>
*
* \section Sec_ModDescription Module Description
* Hardware serial USART driver. This module provides an easy to use driver for
* the setup of and transfer of data over the AVR's USART port.
* Hardware serial USART driver. This module provides an easy to use driver for the setup and transfer
* of data over the selected architecture and microcontroller model's USART port.
*
* \section Sec_ExampleUsage Example Usage
* The following snippet is an example of how this module may be used within a typical
* application.
*
* \code
* // Initialise the serial USART driver before first use, with 9600 baud (and no double-speed mode)
* Serial_Init(9600, false);
*
* // Send a string through the USART
* Serial_TxString("Test String\r\n");
*
* // Receive a byte through the USART
* uint8_t DataByte = Serial_RxByte();
* \endcode
*
* @{
* \note The exact API for this driver may vary depending on the target used - see
* individual target module documentation for the API specific to your target processor.
*/
#ifndef __SERIAL_H__
#define __SERIAL_H__
/* Includes: */
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdbool.h>
#include <stdio.h>
#include "../../Common/Common.h"
#include "../Misc/TerminalCodes.h"
/* Enable C linkage for C++ Compilers: */
#if defined(__cplusplus)
extern "C" {
/* Macros: */
#if !defined(__DOXYGEN__)
#define __INCLUDE_FROM_SERIAL_H
#endif
/* Private Interface - For use in library only: */
#if !defined(__DOXYGEN__)
/* External Variables: */
extern FILE USARTSerialStream;
/* Function Prototypes: */
int Serial_putchar(char DataByte,
FILE *Stream);
int Serial_getchar(FILE *Stream);
int Serial_getchar_Blocking(FILE *Stream);
#endif
/* Includes: */
#include "../../Common/Common.h"
/* Public Interface - May be used in end-application: */
/* Macros: */
/** Macro for calculating the baud value from a given baud rate when the U2X (double speed) bit is
* not set.
*/
#define SERIAL_UBBRVAL(baud) ((((F_CPU / 16) + (baud / 2)) / (baud)) - 1)
/** Macro for calculating the baud value from a given baud rate when the U2X (double speed) bit is
* set.
*/
#define SERIAL_2X_UBBRVAL(baud) ((((F_CPU / 8) + (baud / 2)) / (baud)) - 1)
/* Function Prototypes: */
/** Transmits a given string located in program space (FLASH) through the USART.
*
* \param[in] FlashStringPtr Pointer to a string located in program space.
*/
void Serial_SendString_P(const char* FlashStringPtr) ATTR_NON_NULL_PTR_ARG(1);
/** Transmits a given string located in SRAM memory through the USART.
*
* \param[in] StringPtr Pointer to a string located in SRAM space.
*/
void Serial_SendString(const char* StringPtr) ATTR_NON_NULL_PTR_ARG(1);
/** Transmits a given buffer located in SRAM memory through the USART.
*
* \param[in] Buffer Pointer to a buffer containing the data to send.
* \param[in] Length Length of the data to send, in bytes.
*/
void Serial_SendData(const uint8_t* Buffer, uint16_t Length) ATTR_NON_NULL_PTR_ARG(1);
/* Inline Functions: */
/** Initializes the USART, ready for serial data transmission and reception. This initializes the interface to
* standard 8-bit, no parity, 1 stop bit settings suitable for most applications.
*
* \param[in] BaudRate Serial baud rate, in bits per second.
* \param[in] DoubleSpeed Enables double speed mode when set, halving the sample time to double the baud rate.
*/
static inline void Serial_Init(const uint32_t BaudRate,
const bool DoubleSpeed)
{
UBRR1 = (DoubleSpeed ? SERIAL_2X_UBBRVAL(BaudRate) : SERIAL_UBBRVAL(BaudRate));
UCSR1C = ((1 << UCSZ11) | (1 << UCSZ10));
UCSR1A = (DoubleSpeed ? (1 << U2X1) : 0);
UCSR1B = ((1 << TXEN1) | (1 << RXEN1));
DDRD |= (1 << 3);
PORTD |= (1 << 2);
}
/** Turns off the USART driver, disabling and returning used hardware to their default configuration. */
static inline void Serial_Disable(void)
{
UCSR1B = 0;
UCSR1A = 0;
UCSR1C = 0;
UBRR1 = 0;
DDRD &= ~(1 << 3);
PORTD &= ~(1 << 2);
}
/** Creates a standard character stream from the USART so that it can be used with all the regular functions
* in the avr-libc \c <stdio.h> library that accept a \c FILE stream as a destination (e.g. \c fprintf). The created
* stream is bidirectional and can be used for both input and output functions.
*
* Reading data from this stream is non-blocking, i.e. in most instances, complete strings cannot be read in by a single
* fetch, as the endpoint will not be ready at some point in the transmission, aborting the transfer. However, this may
* be used when the read data is processed byte-per-bye (via \c getc()) or when the user application will implement its own
* line buffering.
*
* \param[in,out] Stream Pointer to a FILE structure where the created stream should be placed, if \c NULL stdio
* and stdin will be configured to use the USART.
*
* \pre The USART must first be configured via a call to \ref Serial_Init() before the stream is used.
*/
static inline void Serial_CreateStream(FILE* Stream)
{
if (!(Stream))
{
Stream = &USARTSerialStream;
stdin = Stream;
stdout = Stream;
}
*Stream = (FILE)FDEV_SETUP_STREAM(Serial_putchar, Serial_getchar, _FDEV_SETUP_RW);
}
/** Identical to \ref Serial_CreateStream(), except that reads are blocking until the calling stream function terminates
* the transfer.
*
* \param[in,out] Stream Pointer to a FILE structure where the created stream should be placed, if \c NULL stdio
* and stdin will be configured to use the USART.
*
* \pre The USART must first be configured via a call to \ref Serial_Init() before the stream is used.
*/
static inline void Serial_CreateBlockingStream(FILE* Stream)
{
if (!(Stream))
{
Stream = &USARTSerialStream;
stdin = Stream;
stdout = Stream;
}
*Stream = (FILE)FDEV_SETUP_STREAM(Serial_putchar, Serial_getchar_Blocking, _FDEV_SETUP_RW);
}
/** Indicates whether a character has been received through the USART.
*
* \return Boolean \c true if a character has been received, \c false otherwise.
*/
static inline bool Serial_IsCharReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
static inline bool Serial_IsCharReceived(void)
{
return ((UCSR1A & (1 << RXC1)) ? true : false);
}
/** Transmits a given byte through the USART.
*
* \param[in] DataByte Byte to transmit through the USART.
*/
static inline void Serial_SendByte(const char DataByte) ATTR_ALWAYS_INLINE;
static inline void Serial_SendByte(const char DataByte)
{
while (!(UCSR1A & (1 << UDRE1)));
UDR1 = DataByte;
}
/** Receives the next byte from the USART.
*
* \return Next byte received from the USART, or a negative value if no byte has been received.
*/
static inline int16_t Serial_ReceiveByte(void) ATTR_ALWAYS_INLINE;
static inline int16_t Serial_ReceiveByte(void)
{
if (!(Serial_IsCharReceived()))
return -1;
return UDR1;
}
/* Disable C linkage for C++ Compilers: */
#if defined(__cplusplus)
}
/* Includes: */
#if (ARCH == ARCH_AVR8)
#include "AVR8/Serial.h"
#else
#error The Serial peripheral driver is not currently available for your selected architecture.
#endif
#endif
/** @} */

View file

@ -31,23 +31,23 @@
/** \file
* \brief Master include file for the TWI peripheral driver.
*
* This file is the master dispatch header file for the device-specific ADC driver, for AVRs containing an ADC.
* This file is the master dispatch header file for the device-specific SPI driver, for microcontrollers
* containing a hardware TWI.
*
* User code should include this file, which will in turn include the correct ADC driver header file for the
* currently selected AVR model.
* User code should include this file, which will in turn include the correct TWI driver header file for the
* currently selected architecture and microcontroller model.
*/
/** \ingroup Group_PeripheralDrivers
* @defgroup Group_TWI TWI Driver - LUFA/Drivers/Peripheral/TWI.h
* \defgroup Group_TWI TWI Driver - LUFA/Drivers/Peripheral/TWI.h
*
* \section Sec_Dependencies Module Source Dependencies
* The following files must be built with any user project that uses this module:
* - LUFA/Drivers/Peripheral/TWI.c <i>(Makefile source module name: LUFA_SRC_TWI)</i>
*
* - LUFA/Drivers/Peripheral/$(ARCH)TWI.c <i>(Makefile source module name: LUFA_SRC_TWI)</i>
*
* \section Sec_ModDescription Module Description
* Master Mode Hardware TWI driver. This module provides an easy to use driver for the hardware
* TWI present on many AVR models, for the transmission and reception of data on a TWI bus.
* Hardware TWI driver. This module provides an easy to use driver for the setup and transfer of data over
* the selected architecture and microcontroller model's TWI bus port.
*
* \note The exact API for this driver may vary depending on the target used - see
* individual target module documentation for the API specific to your target processor.
@ -57,18 +57,18 @@
#define __TWI_H__
/* Macros: */
#if !defined(__DOXYGEN__)
#define __INCLUDE_FROM_TWI_H
#endif
#if !defined(__DOXYGEN__)
#define __INCLUDE_FROM_TWI_H
#endif
/* Includes: */
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || \
defined(__AVR_ATmega32U6__))
#include "AVRU4U6U7/TWI.h"
#include "../../Common/Common.h"
/* Includes: */
#if (ARCH == ARCH_AVR8)
#include "AVR8/TWI.h"
#else
#error "TWI is not available for the currently selected AVR model."
#error The TWI peripheral driver is not currently available for your selected architecture.
#endif
#endif