Add svn:eol-style property to source files, so that the line endings are correctly converted to the target system's native end of line style.

This commit is contained in:
Dean Camera 2010-05-08 03:12:14 +00:00
parent e331b531c6
commit 071e02c6b6
839 changed files with 274562 additions and 274562 deletions

View file

@ -1,200 +1,200 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** Device descriptor structure. This descriptor, located in FLASH memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
USB_Descriptor_Device_t PROGMEM RelayBoard_DeviceDescriptor =
{
.Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device},
.USBSpecification = VERSION_BCD(01.10),
.Class = 0xFF,
.SubClass = 0x00,
.Protocol = 0x00,
.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,
.VendorID = 0x04B4,
.ProductID = 0xFD11,
.ReleaseNumber = VERSION_BCD(02.00),
.ManufacturerStrIndex = 0x01,
.ProductStrIndex = 0x02,
.SerialNumStrIndex = 0x03,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
};
/** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
RelayBoard_USB_Descriptor_Configuration_t PROGMEM RelayBoard_ConfigurationDescriptor =
{
.Config =
{
.Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration},
.TotalConfigurationSize = sizeof(RelayBoard_USB_Descriptor_Configuration_t),
.TotalInterfaces = 1,
.ConfigurationNumber = 1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = USB_CONFIG_ATTR_BUSPOWERED,
.MaxPowerConsumption = USB_CONFIG_POWER_MA(500)
},
.RelayBoardInterface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 0,
.AlternateSetting = 0,
.TotalEndpoints = 0,
.Class = 0xFF,
.SubClass = 0x00,
.Protocol = 0x00,
.InterfaceStrIndex = NO_DESCRIPTOR
},
};
/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_LanguageString =
{
.Header = {.Size = USB_STRING_LEN(1), .Type = DTYPE_String},
.UnicodeString = {LANGUAGE_ID_ENG}
};
/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
* form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_ManufacturerString =
{
.Header = {.Size = USB_STRING_LEN(5), .Type = DTYPE_String},
.UnicodeString = L"SISPM"
};
/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
* and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_ProductString =
{
.Header = {.Size = USB_STRING_LEN(10), .Type = DTYPE_String},
.UnicodeString = L"RelayBoard"
};
/** Serial number string. This is a Unicode string containing the device's unique serial number, expressed as a
* series of uppercase hexadecimal digits.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_SerialString =
{
.Header = {.Size = USB_STRING_LEN(5), .Type = DTYPE_String},
.UnicodeString = L"00001"
};
/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType)
{
case DTYPE_Device:
Address = (void*)&RelayBoard_DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = (void*)&RelayBoard_ConfigurationDescriptor;
Size = sizeof(RelayBoard_USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
switch (DescriptorNumber)
{
case 0x00:
Address = (void*)&RelayBoard_LanguageString;
Size = pgm_read_byte(&RelayBoard_LanguageString.Header.Size);
break;
case 0x01:
Address = (void*)&RelayBoard_ManufacturerString;
Size = pgm_read_byte(&RelayBoard_ManufacturerString.Header.Size);
break;
case 0x02:
Address = (void*)&RelayBoard_ProductString;
Size = pgm_read_byte(&RelayBoard_ProductString.Header.Size);
break;
case 0x03:
Address = (void*)&RelayBoard_SerialString;
Size = pgm_read_byte(&RelayBoard_SerialString.Header.Size);
break;
}
break;
}
*DescriptorAddress = Address;
return Size;
}
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** Device descriptor structure. This descriptor, located in FLASH memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
USB_Descriptor_Device_t PROGMEM RelayBoard_DeviceDescriptor =
{
.Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device},
.USBSpecification = VERSION_BCD(01.10),
.Class = 0xFF,
.SubClass = 0x00,
.Protocol = 0x00,
.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,
.VendorID = 0x04B4,
.ProductID = 0xFD11,
.ReleaseNumber = VERSION_BCD(02.00),
.ManufacturerStrIndex = 0x01,
.ProductStrIndex = 0x02,
.SerialNumStrIndex = 0x03,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
};
/** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
RelayBoard_USB_Descriptor_Configuration_t PROGMEM RelayBoard_ConfigurationDescriptor =
{
.Config =
{
.Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration},
.TotalConfigurationSize = sizeof(RelayBoard_USB_Descriptor_Configuration_t),
.TotalInterfaces = 1,
.ConfigurationNumber = 1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = USB_CONFIG_ATTR_BUSPOWERED,
.MaxPowerConsumption = USB_CONFIG_POWER_MA(500)
},
.RelayBoardInterface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 0,
.AlternateSetting = 0,
.TotalEndpoints = 0,
.Class = 0xFF,
.SubClass = 0x00,
.Protocol = 0x00,
.InterfaceStrIndex = NO_DESCRIPTOR
},
};
/** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_LanguageString =
{
.Header = {.Size = USB_STRING_LEN(1), .Type = DTYPE_String},
.UnicodeString = {LANGUAGE_ID_ENG}
};
/** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable
* form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_ManufacturerString =
{
.Header = {.Size = USB_STRING_LEN(5), .Type = DTYPE_String},
.UnicodeString = L"SISPM"
};
/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
* and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_ProductString =
{
.Header = {.Size = USB_STRING_LEN(10), .Type = DTYPE_String},
.UnicodeString = L"RelayBoard"
};
/** Serial number string. This is a Unicode string containing the device's unique serial number, expressed as a
* series of uppercase hexadecimal digits.
*/
USB_Descriptor_String_t PROGMEM RelayBoard_SerialString =
{
.Header = {.Size = USB_STRING_LEN(5), .Type = DTYPE_String},
.UnicodeString = L"00001"
};
/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType)
{
case DTYPE_Device:
Address = (void*)&RelayBoard_DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = (void*)&RelayBoard_ConfigurationDescriptor;
Size = sizeof(RelayBoard_USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
switch (DescriptorNumber)
{
case 0x00:
Address = (void*)&RelayBoard_LanguageString;
Size = pgm_read_byte(&RelayBoard_LanguageString.Header.Size);
break;
case 0x01:
Address = (void*)&RelayBoard_ManufacturerString;
Size = pgm_read_byte(&RelayBoard_ManufacturerString.Header.Size);
break;
case 0x02:
Address = (void*)&RelayBoard_ProductString;
Size = pgm_read_byte(&RelayBoard_ProductString.Header.Size);
break;
case 0x03:
Address = (void*)&RelayBoard_SerialString;
Size = pgm_read_byte(&RelayBoard_SerialString.Header.Size);
break;
}
break;
}
*DescriptorAddress = Address;
return Size;
}

View file

@ -1,59 +1,59 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for Descriptors.c.
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <avr/pgmspace.h>
#include <LUFA/Drivers/USB/USB.h>
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
USB_Descriptor_Interface_t RelayBoardInterface;
} RelayBoard_USB_Descriptor_Configuration_t;
/* Function Prototypes: */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, void** const DescriptorAddress);
#endif
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for Descriptors.c.
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <avr/pgmspace.h>
#include <LUFA/Drivers/USB/USB.h>
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
USB_Descriptor_Interface_t RelayBoardInterface;
} RelayBoard_USB_Descriptor_Configuration_t;
/* Function Prototypes: */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, void** const DescriptorAddress);
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,149 +1,149 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the RelayBoard program. This file contains the main tasks of
* the project and is responsible for the initial application hardware configuration.
*/
#include "RelayBoard.h"
/** Main program entry point. This routine contains the overall program flow, including initial
* setup of all components and the main program loop.
*/
int main(void)
{
SetupHardware();
sei();
for (;;)
USB_USBTask();
}
/** Configures the board hardware and chip peripherals for the project's functionality. */
void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
/* Hardware Initialization */
USB_Init();
/* Initialize Relays */
DDRC |= ALL_RELAYS;
PORTC &= ~ALL_RELAYS;
}
/** Event handler for the library USB Configuration Changed event. */
void EVENT_USB_Device_ConfigurationChanged(void)
{
USB_Device_EnableSOFEvents();
}
/** Event handler for the library USB Unhandled Control Packet event. */
void EVENT_USB_Device_UnhandledControlRequest(void)
{
const uint8_t SerialNumber[5] = { 0, 0, 0, 0, 1 };
uint8_t ControlData[2] = { 0, 0 };
switch (USB_ControlRequest.bRequest)
{
case 0x09:
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
{
LEDs_ToggleLEDs(LEDS_LED1);
Endpoint_ClearSETUP();
Endpoint_Read_Control_Stream_LE(ControlData, sizeof(ControlData));
Endpoint_ClearIN();
switch (USB_ControlRequest.wValue)
{
case 0x303:
if (ControlData[1]) PORTC &= ~RELAY1; else PORTC |= RELAY1;
break;
case 0x306:
if (ControlData[1]) PORTC &= ~RELAY2; else PORTC |= RELAY2;
break;
case 0x309:
if (ControlData[1]) PORTC &= ~RELAY3; else PORTC |= RELAY3;
break;
case 0x30c:
if (ControlData[1]) PORTC &= ~RELAY4; else PORTC |= RELAY4;
break;
}
}
break;
case 0x01:
if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
{
LEDs_ToggleLEDs(LEDS_LED1);
Endpoint_ClearSETUP();
switch (USB_ControlRequest.wValue)
{
case 0x301:
Endpoint_Write_Control_Stream_LE(SerialNumber, sizeof(SerialNumber));
break;
case 0x303:
ControlData[1] = (PORTC & RELAY1) ? 2 : 3;
break;
case 0x306:
ControlData[1] = (PORTC & RELAY2) ? 2 : 3;
break;
case 0x309:
ControlData[1] = (PORTC & RELAY3) ? 2 : 3;
break;
case 0x30c:
ControlData[1] = (PORTC & RELAY4) ? 2 : 3;
break;
}
if (ControlData[1])
Endpoint_Write_Control_Stream_LE(ControlData, sizeof(ControlData));
Endpoint_ClearOUT();
}
break;
}
}
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the RelayBoard program. This file contains the main tasks of
* the project and is responsible for the initial application hardware configuration.
*/
#include "RelayBoard.h"
/** Main program entry point. This routine contains the overall program flow, including initial
* setup of all components and the main program loop.
*/
int main(void)
{
SetupHardware();
sei();
for (;;)
USB_USBTask();
}
/** Configures the board hardware and chip peripherals for the project's functionality. */
void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
/* Hardware Initialization */
USB_Init();
/* Initialize Relays */
DDRC |= ALL_RELAYS;
PORTC &= ~ALL_RELAYS;
}
/** Event handler for the library USB Configuration Changed event. */
void EVENT_USB_Device_ConfigurationChanged(void)
{
USB_Device_EnableSOFEvents();
}
/** Event handler for the library USB Unhandled Control Packet event. */
void EVENT_USB_Device_UnhandledControlRequest(void)
{
const uint8_t SerialNumber[5] = { 0, 0, 0, 0, 1 };
uint8_t ControlData[2] = { 0, 0 };
switch (USB_ControlRequest.bRequest)
{
case 0x09:
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
{
LEDs_ToggleLEDs(LEDS_LED1);
Endpoint_ClearSETUP();
Endpoint_Read_Control_Stream_LE(ControlData, sizeof(ControlData));
Endpoint_ClearIN();
switch (USB_ControlRequest.wValue)
{
case 0x303:
if (ControlData[1]) PORTC &= ~RELAY1; else PORTC |= RELAY1;
break;
case 0x306:
if (ControlData[1]) PORTC &= ~RELAY2; else PORTC |= RELAY2;
break;
case 0x309:
if (ControlData[1]) PORTC &= ~RELAY3; else PORTC |= RELAY3;
break;
case 0x30c:
if (ControlData[1]) PORTC &= ~RELAY4; else PORTC |= RELAY4;
break;
}
}
break;
case 0x01:
if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
{
LEDs_ToggleLEDs(LEDS_LED1);
Endpoint_ClearSETUP();
switch (USB_ControlRequest.wValue)
{
case 0x301:
Endpoint_Write_Control_Stream_LE(SerialNumber, sizeof(SerialNumber));
break;
case 0x303:
ControlData[1] = (PORTC & RELAY1) ? 2 : 3;
break;
case 0x306:
ControlData[1] = (PORTC & RELAY2) ? 2 : 3;
break;
case 0x309:
ControlData[1] = (PORTC & RELAY3) ? 2 : 3;
break;
case 0x30c:
ControlData[1] = (PORTC & RELAY4) ? 2 : 3;
break;
}
if (ControlData[1])
Endpoint_Write_Control_Stream_LE(ControlData, sizeof(ControlData));
Endpoint_ClearOUT();
}
break;
}
}

View file

@ -1,64 +1,64 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for RelayBoard.c.
*/
#ifndef _RELAYBOARD_H_
#define _RELAYBOARD_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include "Descriptors.h"
#include <LUFA/Version.h>
#include <LUFA/Drivers/Board/LEDs.h>
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
#define RELAY1 (1 << 7)
#define RELAY2 (1 << 6)
#define RELAY3 (1 << 5)
#define RELAY4 (1 << 4)
#define ALL_RELAYS (RELAY1|RELAY2|RELAY3|RELAY4)
/* Function Prototypes: */
void SetupHardware(void);
void EVENT_USB_Device_UnhandledControlRequest(void);
#endif
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 OBinou (obconseil [at] gmail [dot] com)
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for RelayBoard.c.
*/
#ifndef _RELAYBOARD_H_
#define _RELAYBOARD_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include "Descriptors.h"
#include <LUFA/Version.h>
#include <LUFA/Drivers/Board/LEDs.h>
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
#define RELAY1 (1 << 7)
#define RELAY2 (1 << 6)
#define RELAY3 (1 << 5)
#define RELAY4 (1 << 4)
#define ALL_RELAYS (RELAY1|RELAY2|RELAY3|RELAY4)
/* Function Prototypes: */
void SetupHardware(void);
void EVENT_USB_Device_UnhandledControlRequest(void);
#endif

View file

@ -1,95 +1,95 @@
/** \file
*
* This file contains special DoxyGen information for the generation of the main page and other special
* documentation pages. It is not a project source file.
*/
/** \mainpage OB's Quad-Relay outlet control using a Teensy2++
*
* \section SSec_Compat Project Compatibility:
*
* The following list indicates what microcontrollers are compatible with this project.
*
* - AT90USB1286
*
* \section SSec_Info USB Information:
*
* The following table gives a rundown of the USB utilization of this project.
*
* <table>
* <tr>
* <td><b>USB Mode:</b></td>
* <td>Device</td>
* </tr>
* <tr>
* <td><b>USB Class:</b></td>
* <td>None</td>
* </tr>
* <tr>
* <td><b>USB Subclass:</b></td>
* <td>None</td>
* </tr>
* <tr>
* <td><b>Relevant Standards:</b></td>
* <td>USB Standards</td>
* </tr>
* <tr>
* <td><b>Usable Speeds:</b></td>
* <td>Low Speed Mode, Full Speed Mode</td>
* </tr>
* </table>
*
* \section SSec_Description Project Description:
*
* Firmware for a Teensy2++ AVR-based miniboard to control four relays, using the
* same protocol used by the commercially available Silver Shield PM power outlets
* ( http://sourceforge.net/projects/sispmctl ) sold for some time. Because this
* project mimics the original device, it can be controlled using the "sismpctl"
* package included in many Linux distributions - including router-orientated
* versions such as OpenWRT - to control the board's relays.
*
* Relays 1 to 4 are respectively wired to pins C4, C5, C6 and C7 of the Teensy++ V2,
* which are the PORTC bits 4 to 7 of the AT90USB1286. The relays MUST be wired through
* a transistor, and a diode must be added on the relay's contact pins to protect
* the transistor from back EMF generated from the relay when the coil is turned off.
* The transistor base pin is wired to the Teensy data port through a 10K resistor. A
* LED may be also be added as a relay status indicator on each channel.
*
* The Relay coil will be driven by the transistor, but the power will come from
* the 5V from the PC's USB port: Be careful in choosing the relay to avoid overloading
* the PC, as the maximum current used MUST remains under ~450mA @ 5V.
*
* The author's tested relays are 2 Finder 32.21.7.005.2000, coil il 125ohm, which can
* handle 5A @ 250VAC. Be careful to use proper isolation if high voltages are manipulated.
* The author used Hotglue to isolate all parts of the PCB in contact with high voltage.
*
* See <a>http://www.pjrc.com/teensy/</a> for the Teensy2++ website.
*
* <table>
* <tr>
* <td><b>Signal:</b></td>
* <td><b>AVR Port:</b></td>
* </tr>
* <tr>
* <td>Relay 1</td>
* <td>PORTC, Pin 4</td>
* </tr>
* <tr>
* <td>Relay 2</td>
* <td>PORTC, Pin 5</td>
* </tr>
* <tr>
* <td>Relay 3</td>
* <td>PORTC, Pin 6</td>
* </tr>
* <tr>
* <td>Relay 4</td>
* <td>PORTC, Pin 7</td>
* </tr>
* <tr>
* <td>Teensy2++ Yellow Led</td>
* <td>PORTD, pin 6</td>
* </tr>
* </table>
*
/** \file
*
* This file contains special DoxyGen information for the generation of the main page and other special
* documentation pages. It is not a project source file.
*/
/** \mainpage OB's Quad-Relay outlet control using a Teensy2++
*
* \section SSec_Compat Project Compatibility:
*
* The following list indicates what microcontrollers are compatible with this project.
*
* - AT90USB1286
*
* \section SSec_Info USB Information:
*
* The following table gives a rundown of the USB utilization of this project.
*
* <table>
* <tr>
* <td><b>USB Mode:</b></td>
* <td>Device</td>
* </tr>
* <tr>
* <td><b>USB Class:</b></td>
* <td>None</td>
* </tr>
* <tr>
* <td><b>USB Subclass:</b></td>
* <td>None</td>
* </tr>
* <tr>
* <td><b>Relevant Standards:</b></td>
* <td>USB Standards</td>
* </tr>
* <tr>
* <td><b>Usable Speeds:</b></td>
* <td>Low Speed Mode, Full Speed Mode</td>
* </tr>
* </table>
*
* \section SSec_Description Project Description:
*
* Firmware for a Teensy2++ AVR-based miniboard to control four relays, using the
* same protocol used by the commercially available Silver Shield PM power outlets
* ( http://sourceforge.net/projects/sispmctl ) sold for some time. Because this
* project mimics the original device, it can be controlled using the "sismpctl"
* package included in many Linux distributions - including router-orientated
* versions such as OpenWRT - to control the board's relays.
*
* Relays 1 to 4 are respectively wired to pins C4, C5, C6 and C7 of the Teensy++ V2,
* which are the PORTC bits 4 to 7 of the AT90USB1286. The relays MUST be wired through
* a transistor, and a diode must be added on the relay's contact pins to protect
* the transistor from back EMF generated from the relay when the coil is turned off.
* The transistor base pin is wired to the Teensy data port through a 10K resistor. A
* LED may be also be added as a relay status indicator on each channel.
*
* The Relay coil will be driven by the transistor, but the power will come from
* the 5V from the PC's USB port: Be careful in choosing the relay to avoid overloading
* the PC, as the maximum current used MUST remains under ~450mA @ 5V.
*
* The author's tested relays are 2 Finder 32.21.7.005.2000, coil il 125ohm, which can
* handle 5A @ 250VAC. Be careful to use proper isolation if high voltages are manipulated.
* The author used Hotglue to isolate all parts of the PCB in contact with high voltage.
*
* See <a>http://www.pjrc.com/teensy/</a> for the Teensy2++ website.
*
* <table>
* <tr>
* <td><b>Signal:</b></td>
* <td><b>AVR Port:</b></td>
* </tr>
* <tr>
* <td>Relay 1</td>
* <td>PORTC, Pin 4</td>
* </tr>
* <tr>
* <td>Relay 2</td>
* <td>PORTC, Pin 5</td>
* </tr>
* <tr>
* <td>Relay 3</td>
* <td>PORTC, Pin 6</td>
* </tr>
* <tr>
* <td>Relay 4</td>
* <td>PORTC, Pin 7</td>
* </tr>
* <tr>
* <td>Teensy2++ Yellow Led</td>
* <td>PORTD, pin 6</td>
* </tr>
* </table>
*
*/

File diff suppressed because it is too large Load diff