Fixes potential wpm sampling overflow, along with code comment fixes (#15277)
Co-authored-by: Trevor Powell <trevor@vectorstorm.com.au>
This commit is contained in:
		
							parent
							
								
									6e40dfa022
								
							
						
					
					
						commit
						0391801267
					
				
					 3 changed files with 45 additions and 34 deletions
				
			
		| 
						 | 
				
			
			@ -22,33 +22,37 @@
 | 
			
		|||
// WPM Stuff
 | 
			
		||||
static uint8_t  current_wpm = 0;
 | 
			
		||||
static uint32_t wpm_timer   = 0;
 | 
			
		||||
#ifndef WPM_UNFILTERED
 | 
			
		||||
static uint32_t smoothing_timer = 0;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* The WPM calculation works by specifying a certain number of 'periods' inside
 | 
			
		||||
 * a ring buffer, and we count the number of keypresses which occur in each of
 | 
			
		||||
 * those periods.  Then to calculate WPM, we add up all of the keypresses in
 | 
			
		||||
 * the whole ring buffer, divide by the number of keypresses in a 'word', and
 | 
			
		||||
 * then adjust for how much time is captured by our ring buffer.  Right now
 | 
			
		||||
 * the ring buffer is hardcoded below to be six half-second periods, accounting
 | 
			
		||||
 * for a total WPM sampling period of up to three seconds of typing.
 | 
			
		||||
 * then adjust for how much time is captured by our ring buffer.  The size
 | 
			
		||||
 * of the ring buffer can be configured using the keymap configuration
 | 
			
		||||
 * value `WPM_SAMPLE_PERIODS`.
 | 
			
		||||
 *
 | 
			
		||||
 * Whenever our WPM drops to absolute zero due to no typing occurring within
 | 
			
		||||
 * any contiguous three seconds, we reset and start measuring fresh,
 | 
			
		||||
 * which lets our WPM immediately reach the correct value even before a full
 | 
			
		||||
 * three second sampling buffer has been filled.
 | 
			
		||||
 */
 | 
			
		||||
#define MAX_PERIODS (WPM_SAMPLE_PERIODS)
 | 
			
		||||
#define PERIOD_DURATION (1000 * WPM_SAMPLE_SECONDS / MAX_PERIODS)
 | 
			
		||||
#define LATENCY (100)
 | 
			
		||||
static int8_t  period_presses[MAX_PERIODS] = {0};
 | 
			
		||||
 | 
			
		||||
static int16_t period_presses[MAX_PERIODS] = {0};
 | 
			
		||||
static uint8_t current_period              = 0;
 | 
			
		||||
static uint8_t periods                     = 1;
 | 
			
		||||
 | 
			
		||||
#if !defined(WPM_UNFILTERED)
 | 
			
		||||
static uint8_t prev_wpm = 0;
 | 
			
		||||
static uint8_t next_wpm = 0;
 | 
			
		||||
/* LATENCY is used as part of filtering, and controls how quickly the reported
 | 
			
		||||
 * WPM trails behind our actual instantaneous measured WPM value, and is
 | 
			
		||||
 * defined in milliseconds.  So for LATENCY == 100, the displayed WPM is
 | 
			
		||||
 * smoothed out over periods of 0.1 seconds.  This results in a nice,
 | 
			
		||||
 * smoothly-moving reported WPM value which nevertheless is never more than
 | 
			
		||||
 * 0.1 seconds behind the typist's actual current WPM.
 | 
			
		||||
 *
 | 
			
		||||
 * LATENCY is not used if WPM_UNFILTERED is defined.
 | 
			
		||||
 */
 | 
			
		||||
#    define LATENCY (100)
 | 
			
		||||
static uint32_t smoothing_timer = 0;
 | 
			
		||||
static uint8_t  prev_wpm        = 0;
 | 
			
		||||
static uint8_t  next_wpm        = 0;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void    set_current_wpm(uint8_t new_wpm) { current_wpm = new_wpm; }
 | 
			
		||||
| 
						 | 
				
			
			@ -71,7 +75,7 @@ __attribute__((weak)) bool wpm_keycode_user(uint16_t keycode) {
 | 
			
		|||
    return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef WPM_ALLOW_COUNT_REGRESSION
 | 
			
		||||
#if defined(WPM_ALLOW_COUNT_REGRESSION)
 | 
			
		||||
__attribute__((weak)) uint8_t wpm_regress_count(uint16_t keycode) {
 | 
			
		||||
    bool weak_modded = (keycode >= QK_LCTL && keycode < QK_LSFT) || (keycode >= QK_RCTL && keycode < QK_RSFT);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -95,12 +99,12 @@ __attribute__((weak)) uint8_t wpm_regress_count(uint16_t keycode) {
 | 
			
		|||
// Outside 'raw' mode we smooth results over time.
 | 
			
		||||
 | 
			
		||||
void update_wpm(uint16_t keycode) {
 | 
			
		||||
    if (wpm_keycode(keycode)) {
 | 
			
		||||
    if (wpm_keycode(keycode) && period_presses[current_period] < INT16_MAX) {
 | 
			
		||||
        period_presses[current_period]++;
 | 
			
		||||
    }
 | 
			
		||||
#ifdef WPM_ALLOW_COUNT_REGRESSION
 | 
			
		||||
#if defined(WPM_ALLOW_COUNT_REGRESSION)
 | 
			
		||||
    uint8_t regress = wpm_regress_count(keycode);
 | 
			
		||||
    if (regress) {
 | 
			
		||||
    if (regress && period_presses[current_period] > INT16_MIN) {
 | 
			
		||||
        period_presses[current_period]--;
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
| 
						 | 
				
			
			@ -116,32 +120,41 @@ void decay_wpm(void) {
 | 
			
		|||
    }
 | 
			
		||||
    int32_t  elapsed  = timer_elapsed32(wpm_timer);
 | 
			
		||||
    uint32_t duration = (((periods)*PERIOD_DURATION) + elapsed);
 | 
			
		||||
    uint32_t wpm_now  = (60000 * presses) / (duration * WPM_ESTIMATED_WORD_SIZE);
 | 
			
		||||
    wpm_now           = (wpm_now > 240) ? 240 : wpm_now;
 | 
			
		||||
    int32_t  wpm_now  = (60000 * presses) / (duration * WPM_ESTIMATED_WORD_SIZE);
 | 
			
		||||
 | 
			
		||||
    if (wpm_now < 0)  // set some reasonable WPM measurement limits
 | 
			
		||||
        wpm_now = 0;
 | 
			
		||||
    if (wpm_now > 240) wpm_now = 240;
 | 
			
		||||
 | 
			
		||||
    if (elapsed > PERIOD_DURATION) {
 | 
			
		||||
        current_period                 = (current_period + 1) % MAX_PERIODS;
 | 
			
		||||
        period_presses[current_period] = 0;
 | 
			
		||||
        periods                        = (periods < MAX_PERIODS - 1) ? periods + 1 : MAX_PERIODS - 1;
 | 
			
		||||
        elapsed                        = 0;
 | 
			
		||||
        /* if (wpm_timer == 0) { */
 | 
			
		||||
        wpm_timer = timer_read32();
 | 
			
		||||
        /* } else { */
 | 
			
		||||
        /*     wpm_timer += PERIOD_DURATION; */
 | 
			
		||||
        /* } */
 | 
			
		||||
        wpm_timer                      = timer_read32();
 | 
			
		||||
    }
 | 
			
		||||
    if (presses < 2)  // don't guess high WPM based on a single keypress.
 | 
			
		||||
        wpm_now = 0;
 | 
			
		||||
 | 
			
		||||
#if defined WPM_LAUNCH_CONTROL
 | 
			
		||||
#if defined(WPM_LAUNCH_CONTROL)
 | 
			
		||||
    /*
 | 
			
		||||
     * If the `WPM_LAUNCH_CONTROL` option is enabled, then whenever our WPM
 | 
			
		||||
     * drops to absolute zero due to no typing occurring within our sample
 | 
			
		||||
     * ring buffer, we reset and start measuring fresh, which lets our WPM
 | 
			
		||||
     * immediately reach the correct value even before a full sampling buffer
 | 
			
		||||
     * has been filled.
 | 
			
		||||
     */
 | 
			
		||||
    if (presses == 0) {
 | 
			
		||||
        current_period = 0;
 | 
			
		||||
        periods        = 0;
 | 
			
		||||
        wpm_now        = 0;
 | 
			
		||||
        current_period    = 0;
 | 
			
		||||
        periods           = 0;
 | 
			
		||||
        wpm_now           = 0;
 | 
			
		||||
        period_presses[0] = 0;
 | 
			
		||||
    }
 | 
			
		||||
#endif  // WPM_LAUNCH_CONTROL
 | 
			
		||||
 | 
			
		||||
#ifndef WPM_UNFILTERED
 | 
			
		||||
#if defined(WPM_UNFILTERED)
 | 
			
		||||
    current_wpm = wpm_now;
 | 
			
		||||
#else
 | 
			
		||||
    int32_t latency = timer_elapsed32(smoothing_timer);
 | 
			
		||||
    if (latency > LATENCY) {
 | 
			
		||||
        smoothing_timer = timer_read32();
 | 
			
		||||
| 
						 | 
				
			
			@ -150,7 +163,5 @@ void decay_wpm(void) {
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    current_wpm = prev_wpm + (latency * ((int)next_wpm - (int)prev_wpm) / LATENCY);
 | 
			
		||||
#else
 | 
			
		||||
    current_wpm = wpm_now;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue